NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Minjung; Hsu, Hsien-Yuan – Journal of Educational and Behavioral Statistics, 2019
Given the natural hierarchical structure in school-setting data, multilevel modeling (MLM) has been widely employed in education research using a number of different statistical software packages. The purpose of this article is to review a recent feature of Stat-JR, the statistical analysis assistants (SAAs) embedded in Stat-JR (Version 1.0.5),…
Descriptors: Hierarchical Linear Modeling, Statistical Analysis, Computer Software, Computer Software Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Jeon, Minjeong; Rabe-Hesketh, Sophia – Journal of Educational and Behavioral Statistics, 2012
In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be…
Descriptors: Maximum Likelihood Statistics, Computation, Models, Factor Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Lazar, Ann A.; Zerbe, Gary O. – Journal of Educational and Behavioral Statistics, 2011
Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…
Descriptors: Statistical Analysis, Evaluation Research, Error Patterns, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Bauer, Daniel J. – Journal of Educational and Behavioral Statistics, 2003
Multilevel linear models (MLMs) provide a powerful framework for analyzing data collected at nested or non-nested levels, such as students within classrooms. The current article draws on recent analytical and software advances to demonstrate that a broad class of MLMs may be estimated as structural equation models (SEMs). Moreover, within the SEM…
Descriptors: Structural Equation Models, Data Analysis, Computer Software, Evaluation Methods