NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Denson, Cameron D. – Journal of Technology Education, 2017
This article examines the Mathematics, Engineering, Science Achievement (MESA) program and investigates its impact on underrepresented student populations. MESA was started in California during the 1970s to provide pathways to science, technology, engineering, and mathematics careers for underrepresented students and represents an exemplar model…
Descriptors: STEM Education, Science Achievement, Mixed Methods Research, Self Efficacy
Peer reviewed Peer reviewed
Direct linkDirect link
Fantz, Todd D.; Grant, Melva R. – Technology and Engineering Teacher, 2013
The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…
Descriptors: STEM Education, Science Interests, Science Course Improvement Projects, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Hance, Dennis – Tech Directions, 2012
During the fall semester of 2010, mechanical engineering students from Edison State Community College and Wright State University shared their skills and knowledge with students from the Upper Valley JVS (UVJVS) pre-engineering technology program in a highly motivating robotics activity. The activity culminated in 47 teams from regional high…
Descriptors: Competition, Engineering Technology, Robotics, College School Cooperation
Peer reviewed Peer reviewed
Direct linkDirect link
Mehrizi-Sani, A. – IEEE Transactions on Education, 2012
A summer academy is held for grade 9-12 high school students at the University of Toronto, Toronto, ON, Canada, every year. The academy, dubbed the Da Vinci Engineering Enrichment Program (DEEP), is a diverse program that aims to attract domestic and international high school students to engineering and sciences (and possibly recruit them). DEEP…
Descriptors: Field Trips, Enrichment Activities, Engineering, Foreign Countries
Schunn, Christian – National Center for Engineering and Technology Education, 2011
At the University of Pittsburgh, the author and his colleagues have been exploring a range of approaches to design challenges for implementation in high school science classrooms. In general, their approach has always involved students working during class time over the course of many weeks. So, their understanding of what works must be…
Descriptors: Engineering Education, Engineering Technology, Scientific Principles, Learning Experience
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mentzer, Nathan – Journal of STEM Teacher Education, 2011
This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…
Descriptors: Technology Education, Engineering Education, Instructional Design, Barriers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stricker, David R. – Journal of STEM Teacher Education, 2011
This study was conducted to describe a high school engineering curriculum, identify teaching strategies used to increase math and science literacy, and discover challenges and constraints that occur during its development and delivery, as well as what strategies are used to overcome these obstacles. Semi-structured interviews were conducted with…
Descriptors: Curriculum Development, Interviews, Scientific Literacy, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kelley, Todd R. – Journal of Technology Education, 2008
Since the publication of the Standards for Technological Literacy in 2000 (ITEA), there have been a number of new programs developed that are designed to teach pre-engineering. Project Lead the Way (PLTW) is one such program. Project Lead the Way boasts serving over 1250 schools in 44 states and teaching over 160,000 students. Another program is…
Descriptors: Cognitive Processes, Technological Literacy, Technology Education, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Reid, Kenneth J.; Feldhaus, Charles R. – Journal of STEM Education: Innovations and Research, 2007
The implementation of pre-engineering, standard curricula in K-12 schools is growing at a rapid pace. One such curriculum model, Project Lead the Way, consists of six standardized courses requiring significant training for teachers, specified laboratory equipment, standard topics, exams, etc. Schools implementing Project Lead the Way implement an…
Descriptors: College School Cooperation, Engineering Education, Performance Factors, Curriculum Implementation
Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia – Educational Policy Improvement Center (NJ1), 2007
The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…
Descriptors: Educational Policy, Outcomes of Education, Engineering Technology, Academic Standards