Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Artificial Intelligence | 7 |
College Students | 3 |
Models | 3 |
Accuracy | 2 |
Algorithms | 2 |
Classification | 2 |
College Admission | 2 |
Computation | 2 |
Dropouts | 2 |
Foreign Countries | 2 |
Identification | 2 |
More ▼ |
Source
Journal of Educational Data… | 7 |
Author
Adam Fleischhacker | 1 |
Agoritsa Polyzou | 1 |
Autenrieth, Maximilian | 1 |
Caballero, Marcos D. | 1 |
Chuan Cai | 1 |
Cohausz, Lea | 1 |
Decent, Bridgette | 1 |
Fan, Juanjuan | 1 |
Frank Stinar | 1 |
Guarcello, Maureen A. | 1 |
Levine, Richard A. | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Numerical/Quantitative Data | 1 |
Education Level
Higher Education | 7 |
Postsecondary Education | 7 |
Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Frank Stinar; Zihan Xiong; Nigel Bosch – Journal of Educational Data Mining, 2024
Educational data mining has allowed for large improvements in educational outcomes and understanding of educational processes. However, there remains a constant tension between educational data mining advances and protecting student privacy while using educational datasets. Publicly available datasets have facilitated numerous research projects…
Descriptors: Foreign Countries, College Students, Secondary School Students, Data Collection
Md Akib Zabed Khan; Agoritsa Polyzou – Journal of Educational Data Mining, 2024
In higher education, academic advising is crucial to students' decision-making. Data-driven models can benefit students in making informed decisions by providing insightful recommendations for completing their degrees. To suggest courses for the upcoming semester, various course recommendation models have been proposed in the literature using…
Descriptors: Academic Advising, Courses, Data Use, Artificial Intelligence
Chuan Cai; Adam Fleischhacker – Journal of Educational Data Mining, 2024
We propose a novel approach to address the issue of college student attrition by developing a hybrid model that combines a structural neural network with a piecewise exponential model. This hybrid model not only shows the potential to robustly identify students who are at high risk of dropout, but also provides insights into which factors are most…
Descriptors: College Students, Student Attrition, Dropouts, Potential Dropouts
Autenrieth, Maximilian; Levine, Richard A.; Fan, Juanjuan; Guarcello, Maureen A. – Journal of Educational Data Mining, 2021
Propensity score methods account for selection bias in observational studies. However, the consistency of the propensity score estimators strongly depends on a correct specification of the propensity score model. Logistic regression and, with increasing popularity, machine learning tools are used to estimate propensity scores. We introduce a…
Descriptors: Probability, Artificial Intelligence, Educational Research, Statistical Bias
Young, Nicholas T.; Caballero, Marcos D. – Journal of Educational Data Mining, 2021
We encounter variables with little variation often in educational data mining (EDM) due to the demographics of higher education and the questions we ask. Yet, little work has examined how to analyze such data. Therefore, we conducted a simulation study using logistic regression, penalized regression, and random forest. We systematically varied the…
Descriptors: Prediction, Models, Learning Analytics, Mathematics
Cohausz, Lea – Journal of Educational Data Mining, 2022
Student success and drop-out predictions have gained increased attention in recent years, connected to the hope that by identifying struggling students, it is possible to intervene and provide early help and design programs based on patterns discovered by the models. Though by now many models exist achieving remarkable accuracy-values, models…
Descriptors: Guidelines, Academic Achievement, Dropouts, Prediction
Phan, Vinhthuy; Wright, Laura; Decent, Bridgette – Journal of Educational Data Mining, 2022
The allocation of merit-based awards and need-based aid is important to both universities and students who wish to attend the universities. Current approaches tend to consider only institution-centric objectives (e.g. enrollment, revenue) and neglect student-centric objectives in their formulations of the problem. There is lack of consideration to…
Descriptors: Student Financial Aid, Access to Education, Merit Scholarships, Artificial Intelligence