Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 7 |
Descriptor
Algorithms | 7 |
Learning Analytics | 6 |
Comparative Analysis | 4 |
Undergraduate Students | 4 |
Academic Achievement | 2 |
Accuracy | 2 |
Artificial Intelligence | 2 |
Computer Software | 2 |
Distance Education | 2 |
Equal Education | 2 |
Ethics | 2 |
More ▼ |
Source
Journal of Learning Analytics | 7 |
Author
Conijn, Rianne | 1 |
Fikes, Tom | 1 |
Kahr, Patricia | 1 |
Kasra Lekan | 1 |
Laura Froehlich | 1 |
Marek Hatala | 1 |
Martinez-Maldonado, Roberto | 1 |
Meaney, Michael J. | 1 |
Michelle Taub | 1 |
Pishtari, Gerti | 1 |
Prieto, Luis P. | 1 |
More ▼ |
Publication Type
Journal Articles | 7 |
Reports - Research | 6 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 7 |
Postsecondary Education | 7 |
Audience
Location
Estonia | 1 |
Netherlands | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kasra Lekan; Zachary A. Pardos – Journal of Learning Analytics, 2025
Choosing an undergraduate major is an important decision that impacts academic and career outcomes. In this work, we investigate augmenting personalized human advising for major selection using a large language model (LLM), GPT-4. Through a three-phase survey, we compare GPT suggestions and responses for undeclared first- and second-year students…
Descriptors: Technology Uses in Education, Artificial Intelligence, Academic Advising, Majors (Students)
Laura Froehlich; Sebastian Weydner-Volkmann – Journal of Learning Analytics, 2024
Educational disparities between traditional and non-traditional student groups in higher distance education can potentially be reduced by alleviating social identity threat and strengthening students' sense of belonging in the academic context. We present a use case of how Learning Analytics and Machine Learning can be applied to develop and…
Descriptors: Learning Analytics, Electronic Learning, Distance Education, Equal Education
Marek Hatala; Sina Nazeri – Journal of Learning Analytics, 2024
An essential part of making dashboards more effective in motivating students and leading to desirable behavioural change is knowing what information to communicate to the student and how to frame and present it. Most of the research studying dashboards' impact on learning analyzes learning indicators of students as a group. Understanding how a…
Descriptors: Educational Technology, Information Dissemination, Learning Processes, Algorithms
Conijn, Rianne; Kahr, Patricia; Snijders, Chris – Journal of Learning Analytics, 2023
Ethical considerations, including transparency, play an important role when using artificial intelligence (AI) in education. Explainable AI has been coined as a solution to provide more insight into the inner workings of AI algorithms. However, carefully designed user studies on how to design explanations for AI in education are still limited. The…
Descriptors: Ethics, Writing Evaluation, Artificial Intelligence, Essays
Meaney, Michael J.; Fikes, Tom – Journal of Learning Analytics, 2023
This paper leverages cluster analysis to provide insight into how traditionally underrepresented learners engage with entry-level massive open online courses (MOOCs) intended to lower the barrier to university enrolment, produced by a major research university in the United States. From an initial sample of 260,239 learners, we cluster analyze a…
Descriptors: MOOCs, Ethics, Equal Education, Socioeconomic Status
Pishtari, Gerti; Prieto, Luis P.; Rodriguez-Triana, Maria Jesus; Martinez-Maldonado, Roberto – Journal of Learning Analytics, 2022
This research was triggered by the identified need in literature for large-scale studies about the kinds of designs that teachers create for mobile learning (m-learning). These studies require analyses of large datasets of learning designs. The common approach followed by researchers when analyzing designs has been to manually classify them…
Descriptors: Scaling, Classification, Context Effect, Telecommunications
Zhongzhou Chen; Tom Zhang; Michelle Taub – Journal of Learning Analytics, 2024
The current study measures the extent to which students' self-regulated learning tactics and learning outcomes change as the result of a deliberate, data-driven improvement in the learning design of mastery-based online learning modules. In the original design, students were required to attempt the assessment once before being allowed to access…
Descriptors: Learning Analytics, Algorithms, Instructional Materials, Course Content