Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 0 |
Since 2006 (last 20 years) | 3 |
Descriptor
Source
Multivariate Behavioral… | 3 |
Author
Zhang, Guangjian | 2 |
Browne, Michael W. | 1 |
Culpepper, Steven Andrew | 1 |
Edwards, Michael C. | 1 |
Lee, Chun-Ting | 1 |
Publication Type
Journal Articles | 3 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Reports - Research | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Lee, Chun-Ting; Zhang, Guangjian; Edwards, Michael C. – Multivariate Behavioral Research, 2012
Exploratory factor analysis (EFA) is often conducted with ordinal data (e.g., items with 5-point responses) in the social and behavioral sciences. These ordinal variables are often treated as if they were continuous in practice. An alternative strategy is to assume that a normally distributed continuous variable underlies each ordinal variable.…
Descriptors: Personality Traits, Intervals, Monte Carlo Methods, Factor Analysis
Zhang, Guangjian; Browne, Michael W. – Multivariate Behavioral Research, 2010
Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…
Descriptors: Statistical Inference, Error of Measurement, Factor Analysis, Simulation
Culpepper, Steven Andrew – Multivariate Behavioral Research, 2009
This study linked nonlinear profile analysis (NPA) of dichotomous responses with an existing family of item response theory models and generalized latent variable models (GLVM). The NPA method offers several benefits over previous internal profile analysis methods: (a) NPA is estimated with maximum likelihood in a GLVM framework rather than…
Descriptors: Profiles, Item Response Theory, Models, Maximum Likelihood Statistics