NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 35 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ryusei Munemura; Fumiya Okubo; Tsubasa Minematsu; Yuta Taniguchi; Atsushi Shimada – International Association for Development of the Information Society, 2024
Course planning is essential for academic success and the achievement of personal goals. Although universities provide course syllabi and curriculum maps for course planning, integrating and understanding these resources by the learners themselves for effective course planning is time-consuming and difficult. To address this issue, this study…
Descriptors: Curriculum Development, Artificial Intelligence, Natural Language Processing, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Haffenden, Chris; Fano, Elena; Malmsten, Martin; Börjeson, Love – College & Research Libraries, 2023
How can novel AI techniques be made and put to use in the library? Combining methods from data and library science, this article focuses on Natural Language Processing technologies, especially in national libraries. It explains how the National Library of Sweden's collections enabled the development of a new BERT language model for Swedish. It…
Descriptors: Foreign Countries, Artificial Intelligence, Models, Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Wilson, Joseph; Pollard, Benjamin; Aiken, John M.; Lewandowski, H. J. – Physical Review Physics Education Research, 2022
Surveys have long been used in physics education research to understand student reasoning and inform course improvements. However, to make analysis of large sets of responses practical, most surveys use a closed-response format with a small set of potential responses. Open-ended formats, such as written free response, can provide deeper insights…
Descriptors: Natural Language Processing, Science Education, Physics, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Binh Nguyen Thanh; Diem Thi Hong Vo; Minh Nguyen Nhat; Thi Thu Tra Pham; Hieu Thai Trung; Son Ha Xuan – Australasian Journal of Educational Technology, 2023
In this study, we introduce a framework designed to help educators assess the effectiveness of popular generative artificial intelligence (AI) tools in solving authentic assessments. We employed Bloom's taxonomy as a guiding principle to create authentic assessments that evaluate the capabilities of generative AI tools. We applied this framework…
Descriptors: Artificial Intelligence, Models, Performance Based Assessment, Economics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wai Tong Chor; Kam Meng Goh; Li Li Lim; Kin Yun Lum; Tsung Heng Chiew – Education and Information Technologies, 2024
The programme outcomes are broad statements of knowledge, skills, and competencies that the students should be able to demonstrate upon graduation from a programme, while the Educational Taxonomy classifies learning objectives into different domains. The precise mapping of a course outcomes to the programme outcome and the educational taxonomy…
Descriptors: Artificial Intelligence, Engineering Education, Taxonomy, Educational Objectives
Peer reviewed Peer reviewed
Direct linkDirect link
Brendan Bartanen; Andrew Kwok; Andrew Avitabile; Brian Heseung Kim – Educational Researcher, 2025
Heightened concerns about the health of the teaching profession highlight the importance of studying the early teacher pipeline. This exploratory, descriptive article examines preservice teachers' expressed motivation for pursuing a teaching career. Using data from a large teacher education program in Texas, we use a natural language processing…
Descriptors: Career Choice, Teaching (Occupation), Preservice Teachers, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Wonkyung Choi; Jun Jo; Geraldine Torrisi-Steele – International Journal of Adult Education and Technology, 2024
Despite best efforts, the student experience remains poorly understood. One under-explored approach to understanding the student experience is the use of big data analytics. The reported study is a work in progress aimed at exploring the value of big data methods for understanding the student experience. A big data analysis of an open dataset of…
Descriptors: College Students, Data Analysis, Data Collection, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Brendan Bartanen; Andrew Kwok; Andrew Avitabile; Brian Heseung Kim – Grantee Submission, 2025
Heightened concerns about the health of the teaching profession highlight the importance of studying the early teacher pipeline. This exploratory, descriptive article examines preservice teachers' expressed motivation for pursuing a teaching career. Using data from a large teacher education program in Texas, we use a natural language processing…
Descriptors: Career Choice, Teaching (Occupation), Teacher Education Programs, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher Dann; Petrea Redmond; Melissa Fanshawe; Alice Brown; Seyum Getenet; Thanveer Shaik; Xiaohui Tao; Linda Galligan; Yan Li – Australasian Journal of Educational Technology, 2024
Making sense of student feedback and engagement is important for informing pedagogical decision-making and broader strategies related to student retention and success in higher education courses. Although learning analytics and other strategies are employed within courses to understand student engagement, the interpretation of data for larger data…
Descriptors: Artificial Intelligence, Learner Engagement, Feedback (Response), Decision Making
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ibrahim, Mariam Taiwo; Tella, Adeyinka – International Journal of Higher Education, 2020
Purpose: This study analysed text mining from full-text articles and abstracts by postgraduate students in selected Nigeria universities. Design/methodology/approach: The study adopted a survey research design using a questionnaire as the instrument for data collection from 357 postgraduate students drawn using Raosoft sample size calculator. Six…
Descriptors: Journal Articles, Documentation, Graduate Students, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jiménez, Haydée G.; Casanova, Marco A.; Finamore, Anna Carolina; Simões, Gonçalo – International Educational Data Mining Society, 2021
Sentiment Analysis is a field of Natural Language Processing which aims at classifying the author's sentiment in text. This paper first describes a sentiment analysis model for students' comments about professor performance. The model achieved impressive results for comments collected from student surveys conducted at a private university in…
Descriptors: Natural Language Processing, Data Analysis, Classification, Student Surveys
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fonseca, Samuel C.; Pereira, Filipe Dwan; Oliveira, Elaine H. T.; Oliveira, David B. F.; Carvalho, Leandro S. G.; Cristea, Alexandra I. – International Educational Data Mining Society, 2020
As programming must be learned by doing, introductory programming course learners need to solve many problems, e.g., on systems such as 'Online Judges'. However, as such courses are often compulsory for non-Computer Science (nonCS) undergraduates, this may cause difficulties to learners that do not have the typical intrinsic motivation for…
Descriptors: Programming, Introductory Courses, Computer Science Education, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – Grantee Submission, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Balyan, Renu; McCarthy, Kathryn S.; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study examined how machine learning and natural language processing (NLP) techniques can be leveraged to assess the interpretive behavior that is required for successful literary text comprehension. We compared the accuracy of seven different machine learning classification algorithms in predicting human ratings of student essays about…
Descriptors: Artificial Intelligence, Natural Language Processing, Reading Comprehension, Literature
Peer reviewed Peer reviewed
Direct linkDirect link
Machado, Crystiano José Richard; Maciel, Alexandre Magno Andrade; Rodrigues, Rodrigo Lins – International Journal of Distance Education Technologies, 2019
Discussion forums in learning management systems (LMS) have been shown to promote student interaction and contribute to the collaborative practice in the teaching-learning process. By evaluating the postings, teachers can identify students with learning difficulties. However, due to the large volume of posts that are generated on a daily basis in…
Descriptors: Discussion Groups, Integrated Learning Systems, Learning Problems, Content Analysis
Previous Page | Next Page »
Pages: 1  |  2  |  3