NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Americans with Disabilities…1
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fatni Mufit; Yeka Hendriyani; Muhammad Dhanil – Journal of Turkish Science Education, 2024
This research aims to design immersive virtual reality with cognitive conflict to support practical learning of quantum physics. This type of research is design research through the stages of needs analysis, product design, validity test, and practicality test. The needs analysis used questionnaire sheets distributed with Google Forms and obtained…
Descriptors: Teaching Methods, Physics, Science Instruction, Quantum Mechanics
Peer reviewed Peer reviewed
Direct linkDirect link
Gina Passante; Antje Kohnle – Physical Review Physics Education Research, 2024
When thinking about measurement uncertainty in a laboratory experiment that features quantum mechanical effects, it is important to consider both the physical principles of underlying quantum theory (e.g., the uncertainty due to quantum mechanical superposition states) as well as the limitations of the measurement (e.g., the spread in outcomes due…
Descriptors: Quantum Mechanics, Homework, Measurement, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Hughes, Ciaran; Isaacson, Joshua; Turner, Jessica; Perry, Anastasia; Sun, Ranbel – Physics Teacher, 2022
Quantum computing is a growing field at the intersection of physics and computer science. The goal of this article is to highlight a successfully trialled quantum computing course for high school students between the ages of 15 and 18 years old. This course was designed to bridge the gap between popular science articles and advanced undergraduate…
Descriptors: Teaching Methods, Physics, Science Instruction, Quantum Mechanics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nyirahabimana, Pascasie; Minani, Evariste; Nduwingoma, Mathias; Kemeza, Imelda – Journal of Baltic Science Education, 2023
The research on students' perceptions after implementing a teaching style is recommended due to its potential to inform reformed education. The present study surveyed 319 students and revealed their perceptions of multimedia usage in teaching and learning quantum physics. Among these students, 156 were surveyed after learning quantum physics with…
Descriptors: Physics, Science Instruction, Computer Simulation, Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Fisher, Aidan A.E. – Journal of Chemical Education, 2019
Computational approaches toward simulating chemical systems and evaluating experimental data has gathered great momentum in recent years. The onset of more powerful computers and advanced software has been instrumental to this end. This manuscript presents a hands-on activity which trains students in basic coding skills within the Matlab…
Descriptors: Computer Software, Chemistry, Quantum Mechanics, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Kohnle, Antje; Passante, Gina – Physical Review Physics Education Research, 2017
Analyzing, constructing, and translating between graphical, pictorial, and mathematical representations of physics ideas and reasoning flexibly through them ("representational competence") is a key characteristic of expertise in physics but is a challenge for learners to develop. Interactive computer simulations and University of…
Descriptors: Physics, Science Instruction, Quantum Mechanics, Computer Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark – Journal of Chemical Education, 2017
The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…
Descriptors: Quantum Mechanics, Computer Simulation, Science Instruction, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha – Physical Review Physics Education Research, 2017
Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…
Descriptors: Quantum Mechanics, Interaction, Tutorial Programs, Student Improvement
Peer reviewed Peer reviewed
Direct linkDirect link
O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W. – Journal of Chemical Education, 2015
An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…
Descriptors: Chemistry, Teaching Methods, Virtual Classrooms, Open Education
Peer reviewed Peer reviewed
Direct linkDirect link
Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F. – Physical Review Physics Education Research, 2016
A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…
Descriptors: Simulated Environment, Educational Technology, Technology Uses in Education, Quantum Mechanics
Peer reviewed Peer reviewed
Direct linkDirect link
Facao, M.; Lopes, A.; Silva, A. L.; Silva, P. – European Journal of Physics, 2011
We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…
Descriptors: Computer Simulation, Optics, Mathematics, Quantum Mechanics
Association Supporting Computer Users in Education, 2019
The Association Supporting Computer Users in Education (ASCUE) is a group of people interested in small college computing issues. It is a blend of people from all over the country who use computers in their teaching, academic support, and administrative support functions. Begun in 1968 as the College and University Eleven-Thirty Users' Group…
Descriptors: Small Colleges, Computer Uses in Education, Educational Technology, Open Educational Resources
Peer reviewed Peer reviewed
Direct linkDirect link
Garriz, Abel E.; Sztrajman, Alejandro; Mitnik, Dario – European Journal of Physics, 2010
The propagation in time of a wavepacket is a conceptually rich problem suitable to be studied in any introductory quantum mechanics course. This subject is covered analytically in most of the standard textbooks. Computer simulations have become a widespread pedagogical tool, easily implemented in computer labs and in classroom demonstrations.…
Descriptors: Textbooks, Quantum Mechanics, Science Instruction, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Singh, Gurmukh – Journal of Educational Technology Systems, 2012
The present article is primarily targeted for the advanced college/university undergraduate students of chemistry/physics education, computational physics/chemistry, and computer science. The most recent software system such as MS Visual Studio .NET version 2010 is employed to perform computer simulations for modeling Bohr's quantum theory of…
Descriptors: Undergraduate Students, Quantum Mechanics, Physics, Chemistry