NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 29 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Poolman, Toryn M.; Townsend-Nicholson, Andrea; Cain, Amanda – Biochemistry and Molecular Biology Education, 2022
The final year of a biochemistry degree is usually a time to experience research. However, laboratory-based research projects were not possible during COVID-19. Instead, we used open datasets to provide computational research projects in metagenomics to biochemistry undergraduates (80 students with limited computing experience). We aimed to give…
Descriptors: Genetics, Undergraduate Students, Biological Sciences, Internet
Peer reviewed Peer reviewed
Direct linkDirect link
Euler, Elias; Prytz, Christopher; Gregorcic, Bor – Physics Education, 2020
In this paper, we present three types of activity that we have observed during students' free exploration of a software called "Algodoo," which allows students to explore a range of physics phenomena within the same digital learning environment. We discuss how, by responding to any of the three activity types we identify in the students'…
Descriptors: Physics, Educational Environment, Educational Technology, College Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kara, Yilmaz – Universal Journal of Educational Research, 2018
In this study, it was aimed to investigate the effects of microscope simulation software on prospective science teachers' laboratory achievements, microscope use, laboratory reports and views on microscope which was prepared for general biology laboratory. The case study design was adopted for the research. The participants were 49 science teacher…
Descriptors: Laboratory Equipment, Science Laboratories, Science Education, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Berrada, Meryem; Littleton, Joshua A. H.; Secco, Richard A. – Physics Teacher, 2020
The exercises described here conveniently exploit the built-in acceleration sensors in smartphones, devices that are becoming ubiquitous if not essential items for most students. This allows each student to have the opportunity for a hands-on experience and to collect their own data, reduces preparation time, and greatly reduces cost by removing…
Descriptors: Physics, Science Instruction, Telecommunications, Handheld Devices
Peer reviewed Peer reviewed
Direct linkDirect link
Lohning, Anna E.; Hall, Susan; Dukie, Shailandra – Journal of Chemical Education, 2019
Students often approach biochemistry with a degree of trepidation with many considering it one of the more difficult subjects. This is, in part, due to the necessity of making visual images of submicroscopic concepts. Molecular interactions underpin most biological processes; therefore, mastering these concepts is essential. Understanding the…
Descriptors: Undergraduate Students, College Science, Biochemistry, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Dazhi; Xu, Dianxiang; Yeh, Jyh-haw; Fan, Yibo – Journal of STEM Education: Innovations and Research, 2019
Undergraduate research opportunities have expanded from elite universities in the United States to universities and institutions of all ranks and sizes. Research studies have shown positive outcomes in regards to the research experience for undergraduates (REU), such as enhanced research skills and competencies. However, with the widespread…
Descriptors: Undergraduate Students, Student Research, Computer Security, Information Security
Peer reviewed Peer reviewed
Direct linkDirect link
Higman, Carolyn S.; Situ, Henry; Blacklin, Peter; Hein, Jason E. – Journal of Chemical Education, 2017
Advances in 3D printing technology over the past decade have led to its expansion into all subfields of science, including chemistry. This technology provides useful teaching tools that facilitate communication of difficult chemical concepts to students and researchers. Presented here is the use of 3D printing technology to create tangible models…
Descriptors: Undergraduate Study, College Science, Chemistry, Hands on Science
Peer reviewed Peer reviewed
Direct linkDirect link
Sohlberg, Karl; Liu, Xiang – Journal of Chemical Education, 2013
Herein, a slightly enhanced version of extended Huckel molecular orbital theory is applied to demonstrate the spontaneous distortion of 1,3,5,7-cyclooctatetraene from a perfect octagon, a consequence of the Jahn-Teller effect. The exercise is accessible to students who have been introduced to basic quantum mechanics and extended Huckel molecular…
Descriptors: Science Instruction, College Science, Chemistry, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Malgieri, Massimiliano; Onorato, Pasquale; Mascheretti, Paolo; De Ambrosis, Anna – Physics Education, 2014
In this paper we report on an activity sequence with a group of 29 pre-service physics teachers based on the reconstruction and analysis of a thought experiment that was crucial for Huygens' derivation of the formula for the centre of oscillation of a physical pendulum. The sequence starts with student teachers approaching the historical…
Descriptors: Preservice Teachers, Mechanics (Physics), Motion, Teacher Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Ochterski, Joseph W. – Journal of Chemical Education, 2014
This article describes the results of using state-of-the-art, research-quality software as a learning tool in a general chemistry secondary school classroom setting. I present three activities designed to introduce fundamental chemical concepts regarding molecular shape and atomic orbitals to students with little background in chemistry, such as…
Descriptors: Science Instruction, Chemistry, Computer Software, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
McCabe, Declan J. – American Biology Teacher, 2014
This exercise demonstrates the principle of parsimony in constructing cladograms. Although it is designed using mammalian cranial characters, the activity could be adapted for characters from any group of organisms. Students score categorical traits on skulls and record the data in a spreadsheet. Using the Mesquite software package, students…
Descriptors: Science Activities, Science Laboratories, Biology, Evolution
Peer reviewed Peer reviewed
Direct linkDirect link
Gonza´lez-Go´mez, David; Rodríguez, Diego Airado; Can~ada-Can~ada, Florentina; Jeong, Jin Su – Journal of Chemical Education, 2015
Currently, there are a number of educational applications that allow students to reinforce theoretical or numerical concepts through an interactive way. More precisely, in the field of the analytical chemistry, MATLAB has been widely used to write easy-to-implement code, facilitating complex performances and/or tedious calculations. The main…
Descriptors: Science Education, Secondary School Science, College Science, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria – Biochemistry and Molecular Biology Education, 2013
A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…
Descriptors: Introductory Courses, Class Activities, Molecular Structure, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Williams, Travis J.; Kershaw, Allan D.; Li, Vincent; Wu, Xinping – Journal of Chemical Education, 2011
A convenient laboratory experiment is described in which NMR magnetization transfer by inversion recovery is used to measure the kinetics and thermochemistry of amide bond rotation. The experiment utilizes Varian spectrometers with the VNMRJ 2.3 software, but can be easily adapted to any NMR platform. The procedures and sample data sets in this…
Descriptors: Kinetics, Laboratory Experiments, Science Instruction, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P. – European Journal of Physics, 2011
In this paper we present an experimental strategy to measure the micro power dissipation due to Foucault "eddy" currents in a copper cylinder rolling on two parallel conductive rails in the presence of a magnetic field. Foucault power dissipation is obtained from kinematical measurements carried out by using a common PC webcam and video analysis…
Descriptors: Video Technology, Energy, Data Analysis, Science Experiments
Previous Page | Next Page »
Pages: 1  |  2