NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for…1
What Works Clearinghouse Rating
Showing 1 to 15 of 52 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mark W. Isken – INFORMS Transactions on Education, 2025
A staple of many spreadsheet-based management science courses is the use of Excel for activities such as model building, sensitivity analysis, goal seeking, and Monte-Carlo simulation. What might those things look like if carried out using Python? We describe a teaching module in which Python is used to do typical Excel-based modeling and…
Descriptors: Spreadsheets, Models, Programming Languages, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Jule Scheper; Robin Leuppert; Daniel Possler; Anna Freytag; Sophie Bruns; Julia Niemann-Lenz – Journalism and Mass Communication Educator, 2025
Despite the increasing use of the statistical programming language R in statistics and data analysis (SDA), its implementation in communication science education is limited. Experiences, recommendations, and a critical exchange are therefore scarce. The following contribution addresses this very gap. At the Department of Journalism and…
Descriptors: Journalism Education, Programming Languages, Statistical Analysis, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Guangyao Zhang; Lili Wang; Furong Shang; Xianwen Wang – Journal of Higher Education Policy and Management, 2025
The growth in digitalisation has led to an increasing demand for digital skills in various job sectors. In particular, employers in scientific job areas have shown interest in candidates possessing digital competencies. This study aims to analyse the digital skill requirements for candidates in scientific job opportunities. The content analysis is…
Descriptors: Technological Literacy, Job Skills, Employment Qualifications, Employer Attitudes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dorodchi, Mohsen; Dehbozorgi, Nasrin; Fallahian, Mohammadali; Pouriyeh, Seyedamin – Informatics in Education, 2021
Teaching software engineering (SWE) as a core computer science course (ACM, 2013) is a challenging task. The challenge lies in the emphasis on what a large-scale software means, implementing teamwork, and teaching abstraction in software design while simultaneously engaging students into reasonable coding tasks. The abstraction of the system…
Descriptors: Computer Science Education, Computer Software, Teaching Methods, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Vance, Eric A. – Journal of Statistics and Data Science Education, 2021
Data science is collaborative and its students should learn teamwork and collaboration. Yet it can be a challenge to fit the teaching of such skills into the data science curriculum. Team-Based Learning (TBL) is a pedagogical strategy that can help educators teach data science better by flipping the classroom to employ small-group collaborative…
Descriptors: Cooperative Learning, Data Analysis, Statistics Education, Flipped Classroom
Peer reviewed Peer reviewed
Direct linkDirect link
Jenkins, Brian C. – Journal of Economic Education, 2022
The author of this article describes a new undergraduate course where students use Python programming for macroeconomic data analysis and modeling. Students develop basic familiarity with dynamic optimization and simulating linear dynamic models, basic stochastic processes, real business cycle models, and New Keynesian business cycle models.…
Descriptors: Undergraduate Students, Programming Languages, Macroeconomics, Familiarity
Peer reviewed Peer reviewed
Direct linkDirect link
Anand Jeyaraj – Journal of Information Systems Education, 2024
A significant activity in the business analytics process is enrichment, which deals with acquiring and combining data from external sources. While different strategies for enrichment are possible, it can be accomplished more efficiently through automation using Python scripts. Since business students may not be immersed in technology skills and…
Descriptors: Scaffolding (Teaching Technique), Business Administration Education, Data Analysis, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Ammar, Salwa; Kim, Min Jung; Masoumi, Amir H.; Tomoiaga, Alin – Decision Sciences Journal of Innovative Education, 2023
Over the past few years, academics have undertaken initiatives to bridge the gap between theory and practice in the ever-growing field of business analytics, including implementing real-life student projects in all shapes and forms. Every year since 2015, Manhattan College has invited student teams from across North America and elsewhere in the…
Descriptors: Business, Data Analysis, Business Administration Education, Intercollegiate Cooperation
Peer reviewed Peer reviewed
Direct linkDirect link
Green, Michael; Chen, Xiaobo – Journal of Chemical Education, 2020
For undergraduate students to be prepared for graduate school and industry, it is imperative that they understand how to merge the theoretical insights gleaned through their undergraduate education with the raw data sets acquired through materials analysis. Thus, the ability to implement data analysis is a vital skill that students should develop.…
Descriptors: Undergraduate Students, Data, Chemistry, Programming Languages
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Peer reviewed Peer reviewed
Direct linkDirect link
Hsu, Jane Lu; Jones, Abram; Lin, Jia-Huei; Chen, You-Ren – Teaching Statistics: An International Journal for Teachers, 2022
The objective of this study is to present and discuss how data visualization can be incorporated into teaching approaches by business faculty in introductory business statistics to strengthen business students' practical skills. Data visualization lessens difficulties in learning statistics by providing opportunities to illustrate analytical…
Descriptors: Statistics Education, Introductory Courses, COVID-19, Pandemics
Peer reviewed Peer reviewed
Direct linkDirect link
Grajdura, Sarah; Niemeier, Deb – Journal of Civil Engineering Education, 2023
Addressing societal issues in civil and environmental engineering increasingly requires skills in data science and programming. To date, there is not much known about the extent students are learning these skills in current civil and environmental engineering curricula. We conducted a survey of accredited civil and environmental engineering…
Descriptors: Civil Engineering, Engineering Education, Social Problems, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Soltys, Michael; Dang, Hung D.; Reyes Reilly, Ginger; Soltys, Katharine – Strategic Enrollment Management Quarterly, 2021
A Machine Learning framework for predicting enrollment is proposed. The framework consists of Amazon Web Services SageMaker together with standard Python tools for data analytics, including Pandas, NumPy, MatPlotLib, and ScikitLearn. The tools are deployed with Jupyter Notebooks running on AWS SageMaker. Based on three years of enrollment history,…
Descriptors: Enrollment Management, Strategic Planning, Prediction, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Hoffman, Heather J.; Elmi, Angelo F. – Journal of Statistics and Data Science Education, 2021
Teaching students statistical programming languages while simultaneously teaching them how to debug erroneous code is challenging. The traditional programming course focuses on error-free learning in class while students' experiences outside of class typically involve error-full learning. While error-free teaching consists of focused lectures…
Descriptors: Statistics Education, Programming Languages, Troubleshooting, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Thompson, JaCoya; Arastoopour Irgens, Golnaz – Journal of Statistics and Data Science Education, 2022
Data science is a highly interdisciplinary field that comprises various principles, methodologies, and guidelines for the analysis of data. The creation of appropriate curricula that use computational tools and teaching activities is necessary for building skills and knowledge in data science. However, much of the literature about data science…
Descriptors: Data Analysis, Middle School Students, Statistics Education, Student Centered Learning
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4