NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Methin Intaraprasit; Piyathida Tawornparcha; Pann Veerapong; Taweetham Limpanuparb – Journal of Chemical Education, 2023
Experiments involving electrochemical cells are of great pedagogical value for learners of introductory chemistry. This paper discusses an improved experimental kit made from a 24-well cell culture plate and a 3D-printed scaffold. The current design focuses not only on the accuracy of the result but also on the intuitiveness of the wiring work and…
Descriptors: Chemistry, Printing, Computer Peripherals, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Calheiro, L. B.; Freitas, W. P. S.; Martins, C. A.; Goncalves, A. M. B. – Physics Education, 2021
We propose an apparatus that emulates the experiment used by Geiger and Marsden in 1913 to investigate alpha particles (Rutherford) scattering. Using a widely available fused deposition modelling 3D-printer, we built a compartmented and easily assembled educational instrument. The whole apparatus is composed of a 3D-printed chamber and an…
Descriptors: Computer Peripherals, Printing, Physics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Yunhua Li; Weizhong Liao; Cuixue Chen; Meiling Ye; Alexander Luis Imbault – Journal of Chemical Education, 2023
The electrolysis of water to produce hydrogen is a critical step in many green chemistry processes. The key to the efficiency of water electrolysis is the synthesis of an appropriate electrocatalyst. Three-dimensional (3D) printing is an increasingly important part of many industrial processes. In this study, we propose an efficient laboratory…
Descriptors: Printing, Computer Peripherals, Educational Technology, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Killian, Benjamin J.; Singletary, Steven – Journal of Chemical Education, 2022
We present a modernization of the undergraduate physical chemistry laboratory experiment for determining the speed of sound in various gases from resonant frequencies in a spherical resonator. The resonator (schematic IR = 7.5 cm) is constructed by 3D printing with eco-friendly poly(lactic acid), a commercially viable alternative to traditional…
Descriptors: Undergraduate Study, College Science, Chemistry, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Bullis, Ryan; Coker, Joseph; Belding, Jacob; De Groodt, Adam; Mitchell, Dylan W.; Velazquez, Nancy; Bell, Ashtyn; Hall, Jaycee; Gunderson, William A.; Gunderson, Julie E. C. – Journal of Chemical Education, 2021
A fluorometer is a device that measures the spectroscopic properties of fluorescent materials, and fluorometry is used widely in chemistry research settings to characterize fluorescent samples. One of the obstacles faced by undergraduate programs looking to implement fluorometer-based experiments into their laboratory curriculum is the high cost…
Descriptors: Chemistry, Measurement Equipment, Laboratory Equipment, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Vangunten, Matthew T.; Walker, Uriah J.; Do, Han G.; Knust, Kyle N. – Journal of Chemical Education, 2020
We demonstrate that the simplicity of preparing functional microfluidic devices using 3D printing is well suited for undergraduate laboratories. Educational experiments utilizing non-paper-based microfluidic devices are often relegated to well-equipped, resource rich universities because traditional fabrication techniques require specialized and…
Descriptors: College Science, Hands on Science, Laboratory Experiments, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Ledesma, Claudia Martins; Krepsky, Larissa Mascarenhas; Borges, Endler Marcel – Journal of Chemical Education, 2019
Here, students determine the total phenolic content in beers using the Folin-Ciocalteu assay. The Folin-Ciocalteu reagent is a yellow complex, in an alkaline medium; it reacts with phenols and non-phenolic reducing substances to form a blue complex. Quantitative analysis was carried out using absorbance measured at 765 nm (standard method) and…
Descriptors: Science Instruction, Science Experiments, Chemistry, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Hughes, Stephen; Evason, Chris; Leisemann, Scott – Physics Education, 2019
This paper describes the use of a tabletop electron microscope in teaching college level physics. The workings and use of an electron microscope encompass many aspects of science, technology, engineering and mathematics (STEM). A sequence of activities was constructed to compliment the instructional material in the physics course of the University…
Descriptors: Laboratory Equipment, Physics, STEM Education, College Science
Peer reviewed Peer reviewed
Direct linkDirect link
Novak, Elena; Wisdom, Sonya Leach – AERA Online Paper Repository, 2018
We designed a "3D Printing Technology Science Project" as part of a science methods course to engage preservice teachers (N = 41) in a 3D printing project that they could implement with their future elementary school students. The goal was to introduce prospective teachers to engineering design and technology application ideas and…
Descriptors: Science Instruction, Methods Courses, Information Technology, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Poce-Fatou, J. A.; Bethencourt, M.; Moreno-Dorado, F. J.; Palacios-Santander, J. M. – Journal of Chemical Education, 2011
The efficiency of a laundry-washing process is typically assessed using reflection measurements. A spectrometer and an integrating sphere are used to obtain the reflection data. The similarities between this equipment and a commercially available flatbed scanner are examined, and the way a flatbed scanner can be used to obtain detergent…
Descriptors: Chemistry, Physics, College Science, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Doroodmand, Mohammad Mahdi; Maleki, Norooz; Kazemi, Hojjatollah – Journal of Chemical Education, 2010
A simple, sensitive, and portable viscometer has been designed using an opto-mechanical mouse. The viscosity of a fluid is measured using the infrared light-emitting diodes and the optical diodes of an opto-mechanical mouse. These components are positioned near the top and bottom of a glass tube containing the fluid to be measured. The viscosity…
Descriptors: Structural Elements (Construction), Science Activities, Hands on Science, Computer Peripherals