ERIC Number: EJ1381352
Record Type: Journal
Publication Date: 2023
Pages: 20
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0263-5143
EISSN: EISSN-1470-1138
Available Date: N/A
The Effects of Enhanced Hands-On Experimentation on Correcting Student Misconceptions about Work and Energy in Engineering Mechanics
Research in Science & Technological Education, v41 n2 p462-481 2023
Background: A solid conceptual understanding is essential for students to succeed in all academic disciplines. Student misconceptions are correlated with their poor academic performance and high attrition rates. It is especially important to correct student misconceptions in science-based undergraduate engineering mechanics courses that cover numerous fundamental concepts. Purpose: This paper aims to conduct a research study on the effects of an instructional intervention called enhanced hands-on experimentation on identifying and correcting student misconceptions about work and energy in a second-year undergraduate engineering mechanics course. As a comparison, the effects of traditional textbook instruction were also investigated. Sample: The present study is qualitative research involving the transcriptions and coding of qualitative verbal data collected through a think-aloud approach. To offer deep insights into the effects of enhanced hands-on experimentation and traditional textbook instruction on each individual student participant, 12 undergraduate students were recruited to participate in the present study. This sample size is typical in qualitative research. Design and Methods: The student participants were assigned into an enhanced hands-on experimentation group and a traditional textbook instruction group. Data was collected using a think-aloud approach while student participants took a pre-test and a post-test before and after the enhanced hands-on experimentation or traditional textbook instruction intervention. Qualitative verbal data collected through think-aloud were quantitatively analyzed to compare the effectiveness of the two types of interventions on correcting student misconceptions about work and energy in engineering mechanics. Results: Compared to traditional textbook instruction, enhanced hands-on experimentation is significantly more effective in correcting student misconceptions about work and energy. As the consequence of enhanced hands-on experimentation, student participants achieved a group-average normalized learning gain of 55.8%, and the overall reduction rate of students' misconception instances was 47.9%. Conclusions The enhanced hands-on experimentation can be employed as an effective supplemental tool to help correct student misconceptions about work and energy in engineering mechanics.
Descriptors: Hands on Science, Misconceptions, Error Correction, Energy, Engineering Education, Undergraduate Students, Protocol Analysis, Instructional Effectiveness
Routledge. Available from: Taylor & Francis, Ltd. 530 Walnut Street Suite 850, Philadelphia, PA 19106. Tel: 800-354-1420; Tel: 215-625-8900; Fax: 215-207-0050; Web site: http://www.tandf.co.uk/journals
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A