Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 8 |
Descriptor
Computer Science Education | 8 |
Elementary School Students | 6 |
Grade 4 | 6 |
Grade 5 | 5 |
Grade 6 | 4 |
Grade 7 | 3 |
Programming | 3 |
Student Attitudes | 3 |
Student Interests | 3 |
Teaching Methods | 3 |
Thinking Skills | 3 |
More ▼ |
Source
Computer Science Education | 8 |
Author
Aileen Owens | 1 |
Basu, Satabdi | 1 |
Borge, Marcela | 1 |
Boyer, Kristy Elizabeth | 1 |
Cassie F. Quigley | 1 |
Chung, Moon Y. | 1 |
Danielle Herro | 1 |
Eatinger, Donna | 1 |
Emmanuel Johnson | 1 |
Franklin, Diana | 1 |
Holly Plank | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 8 |
Information Analyses | 1 |
Tests/Questionnaires | 1 |
Education Level
Elementary Education | 8 |
Intermediate Grades | 8 |
Grade 4 | 6 |
Middle Schools | 6 |
Grade 5 | 5 |
Grade 6 | 4 |
Grade 7 | 3 |
Junior High Schools | 3 |
Secondary Education | 3 |
Early Childhood Education | 2 |
Grade 3 | 2 |
More ▼ |
Audience
Location
California | 1 |
Hong Kong | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Vandenberg, Jessica; Lynch, Collin; Boyer, Kristy Elizabeth; Wiebe, Eric – Computer Science Education, 2023
Background and Context: Students' self-efficacy toward computing affect their participation in related tasks and courses. Self-efficacy is likely influenced by students' initial experiences and exposure to computer science (CS) activities. Moreover, student interest in a subject likely informs their ability to effectively regulate their learning…
Descriptors: Elementary School Students, Cooperative Learning, Programming, Network Analysis
Leiny Garcia; Miranda Parker; Mark Warschauer – Computer Science Education, 2024
Background and Context: Despite the growing initiatives in K-12 computer science (CS), there is a continued disparity in the participation of Latinx and multilingual students, a historically underrepresented group in computing. The inequitable participation may be understood by examining students' early development of CS attitudes. Objective: This…
Descriptors: Coding, Student Attitudes, Grade 4, Elementary School Students
Teresa M. Ober; Ying Cheng; Meghan R. Coggins; Paul Brenner; Janice Zdankus; Philip Gonsalves; Emmanuel Johnson; Tim Urdan – Computer Science Education, 2024
Background and Context: Differences in children's and adolescents' initial attitudes about computing and other STEM fields may form during middle school and shape decisions leading to career entry. Early emerging differences in career interest may propagate a lack of diversity in computer science and programming fields. Objective: Though middle…
Descriptors: Middle School Students, Student Attitudes, Computer Science Education, STEM Education
Rich, Kathryn M.; Franklin, Diana; Strickland, Carla; Isaacs, Andy; Eatinger, Donna – Computer Science Education, 2022
Background and Context: We explored how learning trajectories (LTs) might be used to design variables instruction. Objective: We aimed to develop an LT for variables and use it to guide curriculum development for fourth graders working in Scratch in an integrated mathematics+CS curriculum. Method: We synthesized learning goals (LGs) and levels of…
Descriptors: Teaching Methods, Computer Science Education, Sequential Learning, Instructional Design
Cassie F. Quigley; Danielle Herro; Holly Plank; Aileen Owens; Oluwadara Abimbade – Computer Science Education, 2024
Background and context: Historically underrepresented youth in computer science persistently experience barriers making it difficult to see themselves in the computer science field including computer science programs and curricula with consistent stereotypical references focused on competition, individualism, and male-associated topics…
Descriptors: Computer Science Education, Minority Group Students, Student Interests, Self Concept
Basu, Satabdi; Rutstein, Daisy W.; Xu, Yuning; Wang, Haiwen; Shear, Linda – Computer Science Education, 2021
Background and Context: In today's increasingly digital world, it is critical that all students learn to think computationally from an early age. Assessments of Computational Thinking (CT) are essential for capturing information about student learning and challenges. When programming is used as a vehicle to foster CT skills, assessment of CT…
Descriptors: Computer Science Education, Programming, Thinking Skills, Logical Thinking
Israel, Maya; Chung, Moon Y.; Wherfel, Quentin M.; Shehab, Saddeddine – Computer Science Education, 2020
Background and Context: Elementary computer science (CS) can be engaging and challenging for some students with disabilities who struggle with complex problem solving. Objective: This study examined academic engagement of students with autism spectrum disorder (ASD) in elementary CS instruction. Method: A mixed methods case study was used to study…
Descriptors: Elementary School Students, Computer Science Education, Autism, Pervasive Developmental Disorders
Borge, Marcela; Toprani, Dhvani; Yan, Shulong; Xia, Yu – Computer Science Education, 2020
Background and Context: in this paper, we argue that integrating Human-Computer Interaction (HCI) into K-12 computing education can present learners with opportunities to develop human-centered design skills as well as higher-order thinking skills. Objective: to address the issues related to the development of HCI forms of expertise, we introduce…
Descriptors: Elementary Secondary Education, Design, Skill Development, Thinking Skills