NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Lockwood, J. R.; McCaffrey, Daniel F. – Journal of Educational and Behavioral Statistics, 2014
A common strategy for estimating treatment effects in observational studies using individual student-level data is analysis of covariance (ANCOVA) or hierarchical variants of it, in which outcomes (often standardized test scores) are regressed on pretreatment test scores, other student characteristics, and treatment group indicators. Measurement…
Descriptors: Error of Measurement, Scores, Statistical Analysis, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Pohl, Steffi; Gräfe, Linda; Rose, Norman – Educational and Psychological Measurement, 2014
Data from competence tests usually show a number of missing responses on test items due to both omitted and not-reached items. Different approaches for dealing with missing responses exist, and there are no clear guidelines on which of those to use. While classical approaches rely on an ignorable missing data mechanism, the most recently developed…
Descriptors: Test Items, Achievement Tests, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Soares, Tufi M.; Goncalves, Flavio B.; Gamerman, Dani – Journal of Educational and Behavioral Statistics, 2009
In this article, an integrated Bayesian model for differential item functioning (DIF) analysis is proposed. The model is integrated in the sense of modeling the responses along with the DIF analysis. This approach allows DIF detection and explanation in a simultaneous setup. Previous empirical studies and/or subjective beliefs about the item…
Descriptors: Test Bias, Bayesian Statistics, Models, Item Response Theory