Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 4 |
Since 2006 (last 20 years) | 7 |
Descriptor
Models | 7 |
Middle School Students | 5 |
Classification | 4 |
Prediction | 4 |
Comparative Analysis | 3 |
Data Analysis | 3 |
Grade 8 | 3 |
Learning Analytics | 3 |
Accuracy | 2 |
Competition | 2 |
Computer Assisted Testing | 2 |
More ▼ |
Source
Journal of Educational Data… | 7 |
Author
Publication Type
Journal Articles | 7 |
Reports - Research | 7 |
Education Level
Junior High Schools | 7 |
Middle Schools | 7 |
Secondary Education | 7 |
Elementary Education | 4 |
Grade 8 | 3 |
Intermediate Grades | 2 |
Grade 4 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
High Schools | 1 |
Audience
Location
North Carolina | 1 |
Wisconsin | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for… | 1 |
National Assessment of… | 1 |
What Works Clearinghouse Rating
Levin, Nathan A. – Journal of Educational Data Mining, 2021
The Big Data for Education Spoke of the NSF Northeast Big Data Innovation Hub and ETS co-sponsored an educational data mining competition in which contestants were asked to predict efficient time use on the NAEP 8th grade mathematics computer-based assessment, based on the log file of a student's actions on a prior portion of the assessment. In…
Descriptors: Learning Analytics, Data Collection, Competition, Prediction
Zhang, Jiayi; Andres, Juliana Ma. Alexandra L.; Hutt, Stephen; Baker, Ryan S.; Ocumpaugh, Jaclyn; Nasiar, Nidhi; Mills, Caitlin; Brooks, Jamiella; Sethuaman, Sheela; Young, Tyron – Journal of Educational Data Mining, 2022
Self-regulated learning (SRL) is a critical component of mathematics problem-solving. Students skilled in SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive process so that they align their efforts with their objectives. An influential framework for SRL, the SMART model (Winne, 2017),…
Descriptors: Problem Solving, Mathematics Instruction, Learning Management Systems, Learning Analytics
Bosch, Nigel – Journal of Educational Data Mining, 2021
Automatic machine learning (AutoML) methods automate the time-consuming, feature-engineering process so that researchers produce accurate student models more quickly and easily. In this paper, we compare two AutoML feature engineering methods in the context of the National Assessment of Educational Progress (NAEP) data mining competition. The…
Descriptors: Accuracy, Learning Analytics, Models, National Competency Tests
Kai, Shimin; Almeda, Ma. Victoria; Baker, Ryan S.; Heffernan, Cristina; Heffernan, Neil – Journal of Educational Data Mining, 2018
Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly beneficial for learning.…
Descriptors: Decision Making, Models, Intervention, Computer Assisted Instruction
Knowles, Jared E. – Journal of Educational Data Mining, 2015
The state of Wisconsin has one of the highest four year graduation rates in the nation, but deep disparities among student subgroups remain. To address this the state has created the Wisconsin Dropout Early Warning System (DEWS), a predictive model of student dropout risk for students in grades six through nine. The Wisconsin DEWS is in use…
Descriptors: Dropouts, Models, Prediction, Risk
Gobert, Janice D.; Sao Pedro, Michael A.; Baker, Ryan S. J. D.; Toto, Ermal; Montalvo, Orlando – Journal of Educational Data Mining, 2012
We present "Science Assistments," an interactive environment, which assesses students' inquiry skills as they engage in inquiry using science microworlds. We frame our variables, tasks, assessments, and methods of analyzing data in terms of "evidence-centered design." Specifically, we focus on the "student model," the…
Descriptors: Data Analysis, Inquiry, Science Process Skills, Student Evaluation
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis