Publication Date
In 2025 | 0 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 11 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 11 |
Descriptor
Algorithms | 11 |
Models | 9 |
Middle School Students | 8 |
Mathematics Instruction | 5 |
Prediction | 5 |
Scores | 5 |
Concept Formation | 4 |
Learning Analytics | 4 |
Mathematical Concepts | 4 |
Mathematics Tests | 4 |
Sampling | 4 |
More ▼ |
Source
Grantee Submission | 4 |
Interactive Learning… | 2 |
AERA Online Paper Repository | 1 |
Journal of Educational Data… | 1 |
Mathematics Teacher: Learning… | 1 |
Research in Science Education | 1 |
Society for Research on… | 1 |
Author
Ashish Gurung | 4 |
Amisha Jindal | 3 |
Erin Ottmar | 3 |
Ji-Eun Lee | 3 |
Reilly Norum | 3 |
Sanika Nitin Patki | 3 |
A. Brooks Bowden | 1 |
Amy Adair | 1 |
Andres, Juliana Ma. Alexandra… | 1 |
Anika Alam | 1 |
Baker, Ryan S. | 1 |
More ▼ |
Publication Type
Reports - Research | 10 |
Journal Articles | 5 |
Speeches/Meeting Papers | 4 |
Reports - Descriptive | 1 |
Education Level
Middle Schools | 11 |
Junior High Schools | 10 |
Secondary Education | 10 |
Elementary Education | 5 |
Intermediate Grades | 3 |
Grade 6 | 2 |
Grade 7 | 2 |
Grade 8 | 2 |
Grade 10 | 1 |
Grade 5 | 1 |
Grade 9 | 1 |
More ▼ |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for… | 1 |
What Works Clearinghouse Rating
Sami Baral; Eamon Worden; Wen-Chiang Lim; Zhuang Luo; Christopher Santorelli; Ashish Gurung; Neil Heffernan – Grantee Submission, 2024
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research have explored methodologies to enhance the effectiveness of feedback to students in various ways. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated…
Descriptors: Automation, Scoring, Computer Assisted Testing, Natural Language Processing
Camille Lund – Mathematics Teacher: Learning and Teaching PK-12, 2024
Every educator knows the sinking feeling of a lesson gone wrong. As teachers look around the room and realize that many of their students are just not getting it, they often feel like failures. However, the struggle students experience as they persevere through high-quality challenging tasks is not a sign of failure, but rather a key aspect of…
Descriptors: Mathematics Instruction, Difficulty Level, Mathematics Skills, Teaching Methods
González-Esparza, Lydia Marion; Jin, Hao-Yue; Lu, Chang; Cutumisu, Maria – AERA Online Paper Repository, 2022
Detecting wheel-spinning behaviors of students who interact with an Intelligent Tutoring System (ITS) is important for generating pertinent and effective feedback and developing more enriching learning experiences. This analysis compares decision tree and bagged tree models of student productive persistence (i.e., mastering a skill) using the…
Descriptors: Student Behavior, Intelligent Tutoring Systems, Feedback (Response), Persistence
Zhai, Xiaoming; Haudek, Kevin C.; Ma, Wenchao – Research in Science Education, 2023
In this study, we developed machine learning algorithms to automatically score students' written arguments and then applied the cognitive diagnostic modeling (CDM) approach to examine students' cognitive patterns of scientific argumentation. We abstracted three types of skills (i.e., attributes) critical for successful argumentation practice:…
Descriptors: Persuasive Discourse, Artificial Intelligence, Cognitive Measurement, Diagnostic Tests
Silvia Wen-Yu Lee; Jyh-Chong Liang; Chung-Yuan Hsu; Meng-Jung Tsai – Interactive Learning Environments, 2024
While research has shown that students' epistemic beliefs can be a strong predictor of their academic performance, cognitive abilities, or self-efficacy, studies of this topic in computer education are rare. The purpose of this study was twofold. First, it aimed to validate a newly developed questionnaire for measuring students' epistemic beliefs…
Descriptors: Student Attitudes, Beliefs, Computer Science Education, Programming
Amy Adair; Ellie Segan; Janice Gobert; Michael Sao Pedro – Grantee Submission, 2023
Developing models and using mathematics are two key practices in internationally recognized science education standards, such as the Next Generation Science Standards (NGSS). However, students often struggle with these two intersecting practices, particularly when developing mathematical models about scientific phenomena. Formative…
Descriptors: Artificial Intelligence, Mathematical Models, Science Process Skills, Inquiry
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Zhang, Jiayi; Andres, Juliana Ma. Alexandra L.; Hutt, Stephen; Baker, Ryan S.; Ocumpaugh, Jaclyn; Nasiar, Nidhi; Mills, Caitlin; Brooks, Jamiella; Sethuaman, Sheela; Young, Tyron – Journal of Educational Data Mining, 2022
Self-regulated learning (SRL) is a critical component of mathematics problem-solving. Students skilled in SRL are more likely to effectively set goals, search for information, and direct their attention and cognitive process so that they align their efforts with their objectives. An influential framework for SRL, the SMART model (Winne, 2017),…
Descriptors: Problem Solving, Mathematics Instruction, Learning Management Systems, Learning Analytics
Anika Alam; A. Brooks Bowden – Society for Research on Educational Effectiveness, 2024
Background: The importance of high school completion for jobs and postsecondary opportunities is well- documented. Combined with federal laws where high school graduation rate is a core performance indicator, school systems and states face pressure to actively monitor and assess high school completion. This proposal employs machine learning…
Descriptors: Dropout Characteristics, Prediction, Artificial Intelligence, At Risk Students
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games