NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Chia-Yu Hsu; Izumi Horikoshi; Rwitajit Majumdar; Hiroaki Ogata – Educational Technology & Society, 2024
This study focuses on the problem that the process of building learning habits has not been clearly described. Therefore, we aim to extract the stages of learning habits from log data. We propose a data model to extract stages of learning habits based on the transtheoretical model and apply the model to the learning logs of self-directed extensive…
Descriptors: Habit Formation, Behavior Change, Learning Analytics, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Achilleas Mandrikas; Constantina Stefanidou; Constantine Skordoulis – Journal of STEM Education: Innovations and Research, 2024
A STEM education program entitled "Come rain or shine" implemented in a primary rural school in southern Greece as part of the "Diffusion of STEM (DI-STEM)" project and the results of its implementation are presented in this paper. The educational program deepened in weather education and intended to develop eight scientific…
Descriptors: Foreign Countries, STEM Education, Elementary Education, Program Implementation
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
The gold-standard for evaluating the effect of an educational intervention on student outcomes is running a randomized controlled trial (RCT). However, RCTs may often be small due to logistical considerations, and resulting treatment effect estimates may lack precision. Recent methods improve experimental precision by incorporating information…
Descriptors: Intervention, Outcomes of Education, Randomized Controlled Trials, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sao Pedro, Michael A.; Baker, Ryan S. J. d.; Gobert, Janice D. – Grantee Submission, 2012
Data-mined models often achieve good predictive power, but sometimes at the cost of interpretability. We investigate here if selecting features to increase a model's construct validity and interpretability also can improve the model's ability to predict the desired constructs. We do this by taking existing models and reducing the feature set to…
Descriptors: Content Validity, Data Interpretation, Models, Predictive Validity