NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 33 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
González-Esparza, Lydia Marion; Jin, Hao-Yue; Lu, Chang; Cutumisu, Maria – AERA Online Paper Repository, 2022
Detecting wheel-spinning behaviors of students who interact with an Intelligent Tutoring System (ITS) is important for generating pertinent and effective feedback and developing more enriching learning experiences. This analysis compares decision tree and bagged tree models of student productive persistence (i.e., mastering a skill) using the…
Descriptors: Student Behavior, Intelligent Tutoring Systems, Feedback (Response), Persistence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Husni Almoubayyed; Stephen E. Fancsali; Steve Ritter – International Educational Data Mining Society, 2023
Recent research seeks to develop more comprehensive learner models for adaptive learning software. For example, models of reading comprehension built using data from students' use of adaptive instructional software for mathematics have recently been developed. These models aim to deliver experiences that consider factors related to learning beyond…
Descriptors: Prediction, Models, Reading Ability, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Mark Wilson; Kathleen Scalise; Perman Gochyyev – Educational Psychology, 2019
In this article, we describe a software system for assessment development in online learning environments in contexts where there are robust links to cognitive modelling including domain and student modelling. BEAR Assessment System Software (BASS) establishes both a theoretical basis for the domain modelling logic, and offers tools for delivery,…
Descriptors: Computer Software, Electronic Learning, Test Construction, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Charlotte Z. Mann; Jiaying Wang; Adam Sales; Johann A. Gagnon-Bartsch – Grantee Submission, 2024
The gold-standard for evaluating the effect of an educational intervention on student outcomes is running a randomized controlled trial (RCT). However, RCTs may often be small due to logistical considerations, and resulting treatment effect estimates may lack precision. Recent methods improve experimental precision by incorporating information…
Descriptors: Intervention, Outcomes of Education, Randomized Controlled Trials, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nguyen, Huy; Wang, Yeyu; Stamper, John; McLaren, Bruce M. – International Educational Data Mining Society, 2019
Knowledge components (KCs) define the underlying skill model of intelligent educational software, and they are critical to understanding and improving the efficacy of learning technology. In this research, we show how learning curve analysis is used to fit a KC model--one that was created after use of the learning technology--which can then be…
Descriptors: Middle School Students, Knowledge Representation, Models, Computer Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ai, Fangzhe; Chen, Yishuai; Guo, Yuchun; Zhao, Yongxiang; Wang, Zhenzhu; Fu, Guowei; Wang, Guangyan – International Educational Data Mining Society, 2019
Personalized education systems recommend learning contents to students based on their capacity to accelerate their learning. This paper proposes a personalized exercise recommendation system for online self-directed learning. We first improve the performance of knowledge tracing models. Existing deep knowledge tracing models, such as Dynamic…
Descriptors: Online Courses, Independent Study, Grade 5, Elementary School Students
Michelle P. Banawan; Jinnie Shin; Tracy Arner; Renu Balyan; Walter L. Leite; Danielle S. McNamara – Grantee Submission, 2023
Academic discourse communities and learning circles are characterized by collaboration, sharing commonalities in terms of social interactions and language. The discourse of these communities is composed of jargon, common terminologies, and similarities in how they construe and communicate meaning. This study examines the extent to which discourse…
Descriptors: Algebra, Discourse Analysis, Semantics, Syntax
Peer reviewed Peer reviewed
Direct linkDirect link
Timms, Michael; DeVelle, Sacha; Lay, Dulce – Australian Journal of Education, 2016
It is well known that learners using intelligent learning environments make different use of the feedback provided by the intelligent learning environment and exhibit different patterns of behaviour. Traditional approaches to measuring such behaviour have focused on observational methods, think-aloud protocols, ratings and log data. More recently,…
Descriptors: Feedback (Response), Learning Processes, Intelligent Tutoring Systems, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zheng, Guoguo; Fancsali, Stephen E.; Ritter, Steven; Berman, Susan R. – Journal of Learning Analytics, 2019
If we wish to embed assessment for accountability within instruction, we need to better understand the relative contribution of different types of learner data to statistical models that predict scores and discrete achievement levels on assessments used for accountability purposes. The present work scales up and extends predictive models of math…
Descriptors: Formative Evaluation, Predictor Variables, Summative Evaluation, Scores
Sahba Akhavan Niaki – ProQuest LLC, 2018
The increasing amount of available subjective text data in internet such as product reviews, movie critiques and social media comments provides golden opportunities for information retrieval researchers to extract useful information out of such datasets. Topic modeling and sentiment analysis are two widely researched fields that separately try to…
Descriptors: Models, Classification, Content Analysis, Documentation
Peer reviewed Peer reviewed
Direct linkDirect link
Nabiyev, Vasif V.; Çakiroglu, Ünal; Karal, Hasan; Erümit, Ali K.; Çebi, Ayça – EURASIA Journal of Mathematics, Science & Technology Education, 2016
This study is aimed to construct a model to transform word "motion problems" in to an algorithmic form in order to be processed by an intelligent tutoring system (ITS). First; categorizing the characteristics of motion problems, second; suggesting a model for the categories were carried out. In order to solve all categories of the…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Word Problems (Mathematics), Mathematics Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Ran; Davenport, Jodi; Stamper, John – International Educational Data Mining Society, 2016
The increasing use of educational technologies in classrooms is producing vast amounts of process data that capture rich information about learning as it unfolds. The field of educational data mining has made great progress in using log data to build models that improve instruction and advance the science of learning. Thus far, however, the…
Descriptors: Educational Technology, Data Analysis, Automation, Data
González-Brenes, José P.; Huang, Yun – International Educational Data Mining Society, 2015
Classification evaluation metrics are often used to evaluate adaptive tutoring systems-- programs that teach and adapt to humans. Unfortunately, it is not clear how intuitive these metrics are for practitioners with little machine learning background. Moreover, our experiments suggest that existing convention for evaluating tutoring systems may…
Descriptors: Intelligent Tutoring Systems, Evaluation Methods, Program Evaluation, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Leite, Maici Duarte; Marczal, Diego; Pimentel, Andrey Ricardo; Direne, Alexandre Ibrahim – Journal of Technology and Science Education, 2014
This paper presents the application of some concepts of Intelligent Tutoring Systems (ITS) to elaborate a conceptual framework that uses the remediation of errors with Multiple External Representations (MERs) in Learning Objects (LO). To this is demonstrated a development of LO for teaching the Pythagorean Theorem through this framework. This…
Descriptors: Foreign Countries, Intelligent Tutoring Systems, Models, Mathematics Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Min, Wookhee; Wiggins, Joseph B.; Pezzullo, Lydia G.; Vail, Alexandria K.; Boyer, Kristy Elizabeth; Mott, Bradford W.; Frankosky, Megan H.; Wiebe, Eric N.; Lester, James C. – International Educational Data Mining Society, 2016
Recent years have seen a growing interest in intelligent game-based learning environments featuring virtual agents. A key challenge posed by incorporating virtual agents in game-based learning environments is dynamically determining the dialogue moves they should make in order to best support students' problem solving. This paper presents a…
Descriptors: Prediction, Models, Intelligent Tutoring Systems, Computer Simulation
Previous Page | Next Page »
Pages: 1  |  2  |  3