NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kostopoulos, Georgios; Karlos, Stamatis; Kotsiantis, Sotiris – IEEE Transactions on Learning Technologies, 2019
Educational data mining has gained a lot of attention among scientists in recent years and constitutes an efficient tool for unraveling the concealed knowledge in educational data. Recently, semisupervised learning methods have been gradually implemented in the educational process demonstrating their usability and effectiveness. Cotraining is a…
Descriptors: Academic Achievement, Case Studies, Usability, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Fincham, Ed; Gasevic, Dragan; Jovanovic, Jelena; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2019
Research into self-regulated learning has traditionally relied upon self-reported data. While there is a rich body of literature that has extracted invaluable information from such sources, it suffers from a number of shortcomings. For instance, it has been shown that surveys often provide insight into students' perceptions about learning rather…
Descriptors: Study Habits, Learning Strategies, Independent Study, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Hung, Jui-Long; Shelton, Brett E.; Yang, Juan; Du, Xu – IEEE Transactions on Learning Technologies, 2019
Performance prediction is a leading topic in learning analytics research due to its potential to impact all tiers of education. This study proposes a novel predictive modeling method to address the research gaps in existing performance prediction research. The gaps addressed include: the lack of existing research focus on performance prediction…
Descriptors: Prediction, Models, At Risk Students, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Wan, Han; Liu, Kangxu; Yu, Qiaoye; Gao, Xiaopeng – IEEE Transactions on Learning Technologies, 2019
Most educational institutions adopted the hybrid teaching mode through learning management systems. The logging data/clickstream could describe learners' online behavior. Many researchers have used them to predict students' performance, which has led to a diverse set of findings, but how to use insights from captured data to enhance learning…
Descriptors: Educational Practices, Learner Engagement, Identification, Study Habits
Peer reviewed Peer reviewed
Direct linkDirect link
Conijn, Rianne; Snijders, Chris; Kleingeld, Ad; Matzat, Uwe – IEEE Transactions on Learning Technologies, 2017
With the adoption of Learning Management Systems (LMSs) in educational institutions, a lot of data has become available describing students' online behavior. Many researchers have used these data to predict student performance. This has led to a rather diverse set of findings, possibly related to the diversity in courses and predictor variables…
Descriptors: Blended Learning, Predictor Variables, Predictive Validity, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Pardo, Abelardo; Han, Feifei; Ellis, Robert A. – IEEE Transactions on Learning Technologies, 2017
Self-regulated learning theories are used to understand the reasons for different levels of university student academic performance. Similarly, learning analytics research proposes the combination of detailed data traces derived from technology-mediated tasks with a variety of algorithms to predict student academic performance. The former approach…
Descriptors: Student Centered Learning, Learning Theories, College Students, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Tempelaar, Dirk T.; Rienties, Bart; Nguyen, Quan – IEEE Transactions on Learning Technologies, 2017
Studies in the field of learning analytics (LA) have shown students' demographics and learning management system (LMS) data to be effective identifiers of "at risk" performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to the inability to explain why students…
Descriptors: Student Behavior, Integrated Learning Systems, Personality, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Pattanasri, N.; Mukunoki, M.; Minoh, M. – IEEE Transactions on Learning Technologies, 2012
Comprehension assessment is an essential tool in classroom learning. However, the judgment often relies on experience of an instructor who makes observation of students' behavior during the lessons. We argue that students should report their own comprehension explicitly in a classroom. With students' comprehension made available at the slide…
Descriptors: Foreign Countries, Comprehension, Visual Aids, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Yu, Hong Qing; Pedrinaci, C.; Dietze, S.; Domingue, J. – IEEE Transactions on Learning Technologies, 2012
Multimedia educational resources play an important role in education, particularly for distance learning environments. With the rapid growth of the multimedia web, large numbers of educational video resources are increasingly being created by several different organizations. It is crucial to explore, share, reuse, and link these educational…
Descriptors: Foreign Countries, Electronic Learning, Distance Education, Internet