NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Vo, Thi Ngoc Chau; Nguyen, Phung – IEEE Transactions on Learning Technologies, 2021
A course-level early final study status prediction task is to predict as soon as possible the final success of each student after studying a course. It is significant because each successful course accomplishment is required for a degree. Further, early predictions provide enough time to make necessary changes for ultimate success. This article…
Descriptors: Prediction, Academic Achievement, Data Collection, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Saint, John; Whitelock-Wainwright, Alexander; Gasevic, Dragan; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2020
The recent focus on learning analytics (LA) to analyze temporal dimensions of learning holds the promise of providing insights into latent constructs, such as learning strategy, self-regulated learning (SRL), and metacognition. These methods seek to provide an enriched view of learner behaviors beyond the scope of commonly used correlational or…
Descriptors: Undergraduate Students, Engineering Education, Learning Analytics, Learning Strategies
Peer reviewed Peer reviewed
Direct linkDirect link
Jin, Sung-Hee – IEEE Transactions on Learning Technologies, 2021
Participation dashboards in online discussions are learning support tools that can have a positive effect on learners' learning outcomes and satisfaction levels, but their effectiveness differs according to how learners recognize and interpret them. However, there is a lack of research investigating the effectiveness of visualization methods…
Descriptors: Asynchronous Communication, Discussion, Computer Mediated Communication, Peer Relationship
Peer reviewed Peer reviewed
Direct linkDirect link
Ruiperez-Valiente, Jose A.; Munoz-Merino, Pedro J.; Alexandron, Giora; Pritchard, David E. – IEEE Transactions on Learning Technologies, 2019
One of the reported methods of cheating in online environments in the literature is CAMEO (Copying Answers using Multiple Existences Online), where harvesting accounts are used to obtain correct answers that are later submitted in the master account which gives the student credit to obtain a certificate. In previous research, we developed an…
Descriptors: Computer Assisted Testing, Tests, Online Courses, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Cano, Alberto; Leonard, John D. – IEEE Transactions on Learning Technologies, 2019
Early warning systems have been progressively implemented in higher education institutions to predict student performance. However, they usually fail at effectively integrating the many information sources available at universities to make more accurate and timely predictions, they often lack decision-making reasoning to motivate the reasons…
Descriptors: Progress Monitoring, At Risk Students, Disproportionate Representation, Underachievement
Peer reviewed Peer reviewed
Direct linkDirect link
Kostopoulos, Georgios; Karlos, Stamatis; Kotsiantis, Sotiris – IEEE Transactions on Learning Technologies, 2019
Educational data mining has gained a lot of attention among scientists in recent years and constitutes an efficient tool for unraveling the concealed knowledge in educational data. Recently, semisupervised learning methods have been gradually implemented in the educational process demonstrating their usability and effectiveness. Cotraining is a…
Descriptors: Academic Achievement, Case Studies, Usability, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Moyne, Martina M.; Herman, Maxwell; Gajos, Krzysztof Z.; Walsh, Conor J.; Holland, Donal P. – IEEE Transactions on Learning Technologies, 2018
This article describes the development of the Design Evaluation and Feedback Tool (DEFT), a custom-built web-based system that collects and reports data to support teaching, learning, and research in project-based engineering design education. The DEFT system collects data through short weekly questionnaires for students and instructors in…
Descriptors: Engineering Education, Design, Active Learning, Student Projects
Peer reviewed Peer reviewed
Direct linkDirect link
Fincham, Ed; Gasevic, Dragan; Jovanovic, Jelena; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2019
Research into self-regulated learning has traditionally relied upon self-reported data. While there is a rich body of literature that has extracted invaluable information from such sources, it suffers from a number of shortcomings. For instance, it has been shown that surveys often provide insight into students' perceptions about learning rather…
Descriptors: Study Habits, Learning Strategies, Independent Study, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Pardo, Abelardo; Han, Feifei; Ellis, Robert A. – IEEE Transactions on Learning Technologies, 2017
Self-regulated learning theories are used to understand the reasons for different levels of university student academic performance. Similarly, learning analytics research proposes the combination of detailed data traces derived from technology-mediated tasks with a variety of algorithms to predict student academic performance. The former approach…
Descriptors: Student Centered Learning, Learning Theories, College Students, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Tempelaar, Dirk T.; Rienties, Bart; Nguyen, Quan – IEEE Transactions on Learning Technologies, 2017
Studies in the field of learning analytics (LA) have shown students' demographics and learning management system (LMS) data to be effective identifiers of "at risk" performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to the inability to explain why students…
Descriptors: Student Behavior, Integrated Learning Systems, Personality, Educational Research