NotesFAQContact Us
Collection
Advanced
Search Tips
Source
IEEE Transactions on Learning…124
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 124 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sohail Ahmed Soomro; Halar Haleem; Bertrand Schneider; Georgi V. Georgiev – IEEE Transactions on Learning Technologies, 2025
This study presents a monocular approach for capturing students' prototyping activities and interactions in digital-fabrication-based makerspaces. The proposed method uses images from a single camera and applies object reidentification, tracking, and depth estimation algorithms to track and uniquely label participants in the space, extracting both…
Descriptors: Learning Activities, Shared Resources and Services, Manufacturing, Photography
Peer reviewed Peer reviewed
Direct linkDirect link
Juan Antonio Martinez-Carrascal; Jorge Munoz-Gama; Teresa Sancho-Vinuesa – IEEE Transactions on Learning Technologies, 2024
Academic institutions dedicate a substantial effort to ensure the academic success of their students. At the course level, teachers recommend learning paths (RLPs) for students to guarantee the achievement of their learning outcomes. In terms of performance, these kinds of approaches are deemed more effective than others based uniquely on…
Descriptors: Online Courses, Mathematics Instruction, Undergraduate Students, Mathematics Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Hua Ma; Wen Zhao; Yuqi Tang; Peiji Huang; Haibin Zhu; Wensheng Tang; Keqin Li – IEEE Transactions on Learning Technologies, 2024
To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or…
Descriptors: College Students, Learning Analytics, Learning Management Systems, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Esteban Villalobos; Mar Perez-Sanagustin; Roger Azevedo; Cedric Sanza; Julien Broisin – IEEE Transactions on Learning Technologies, 2024
Blended learning (BL) has become increasingly popular in higher education institutions. Despite its popularity and the advances in methodologies for the detection of learning tactics and strategies from trace data, little is known about how they apply to BL settings and, therefore, how students use them to plan, organize, monitor, and regulate…
Descriptors: Metacognition, Learning Strategies, Blended Learning, Instructional Design
Peer reviewed Peer reviewed
Direct linkDirect link
Shadiev, Rustam; Liu, Jiawen; Cheng, Pei-Yu – IEEE Transactions on Learning Technologies, 2023
In traditional English as a foreign language (EFL) speaking classes, students have insufficient time and opportunities to practice (Zhan et al., 2015). In addition, they lack cultural and communicative contexts (Ko et al., 2021) to improve their speaking skills. Furthermore, a large number of students, especially in Asian countries, have low…
Descriptors: Electronic Learning, Handheld Devices, Second Language Learning, English (Second Language)
Peer reviewed Peer reviewed
Direct linkDirect link
Qin Ni; Yifei Mi; Yonghe Wu; Liang He; Yuhui Xu; Bo Zhang – IEEE Transactions on Learning Technologies, 2024
Learning style recognition is an indispensable part of achieving personalized learning in online learning systems. The traditional inventory method for learning style identification faces the limitations such as subject and static characteristics. Therefore, an automatic and reliable learning style recognition mechanism is designed in this…
Descriptors: Cognitive Style, Electronic Learning, Prediction, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Xiuyu Lin; Zehui Zhan; Xuebo Zhang; Jiayi Xiong – IEEE Transactions on Learning Technologies, 2024
The attribution of learning success or failure is crucial for students' learning and motivation. Effective attribution of their learning success or failure in the context of a small private online course (SPOC) could generate students' motivation toward learning success while an incorrect attribution would lead to a sense of helplessness. Based on…
Descriptors: Learning Analytics, Learning Processes, Learning Motivation, Attribution Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Hodam; Chae, Younsoo; Kim, Suhye; Im, Chang-Hwan – IEEE Transactions on Learning Technologies, 2023
Owing to the rapid development of information and communication technologies, online or mobile learning content is widely available on the Internet. Unlike traditional face-to-face learning, online learning exhibits a critical limitation: real-time interactions between learners and teachers are generally not feasible in online learning. To…
Descriptors: College Students, Control Groups, Attention, Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Teemu H. Laine; Woohyun Lee – IEEE Transactions on Learning Technologies, 2024
The metaverse is a network of interoperable and persistent 3-D virtual worlds where users can coexist and interact through mechanisms, such as gamification, nonfungible tokens, and cryptocurrencies. Although the metaverse is a theoretical construct today, many collaborative virtual reality (CVR) applications have emerged as potential components of…
Descriptors: Computer Simulation, Simulated Environment, College Students, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Han, Feifei; Ellis, Robert A.; Pardo, Abelardo – IEEE Transactions on Learning Technologies, 2022
This article uses digital traces to help identify students' online learning strategies by making a clear distinction between the descriptive features (the proportional distribution of students' different online learning actions) and quantitative aspects (the total number of the online learning sessions), a distinction that has not been properly…
Descriptors: Electronic Learning, Learning Strategies, Student Behavior, Educational Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Cleon Xavier; Luiz Rodrigues; Newarney Costa; Rodrigues Neto; Gabriel Alves; Taciana Pontual Falcao; Dragan Gasevic; Rafael Ferreira Mello – IEEE Transactions on Learning Technologies, 2025
Providing timely and personalized feedback on open-ended student responses is a challenge in education due to the increased workloads and time constraints educators face. While existing research has explored how learning analytic approaches can support feedback provision, previous studies have not sufficiently investigated educators' perspectives…
Descriptors: Teacher Empowerment, Learning Analytics, Artificial Intelligence, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Wan, Han; Zhong, Zihao; Tang, Lina; Gao, Xiaopeng – IEEE Transactions on Learning Technologies, 2023
Small private online courses (SPOCs) have influenced teaching and learning in China's higher education. Learning management systems (LMSs) are important components in SPOCs. They can collect various data related to student behavior and support pedagogical interventions. This research used feature engineering and nearest neighbor smoothing models…
Descriptors: Online Courses, Learning Management Systems, Higher Education, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Chen Li; Yue Jiang; Peter H. F. Ng; Yixin Dai; Francis Cheung; Henry C. B. Chan; Ping Li – IEEE Transactions on Learning Technologies, 2024
Computer-supported collaborative learning aims to use information technologies to support collaborative knowledge construction by practicing the relevant pedagogical approaches, especially in the distance learning setting. The enabling technologies are fast advancing, and the need for solutions during the COVID-19 global pandemic led to the…
Descriptors: Computer Simulation, Computer Assisted Instruction, Cooperative Learning, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Lucia Uguina-Gadella; Iria Estevez-Ayres; Jesus Arias Fisteus; Carlos Alario-Hoyos; Carlos Delgado Kloos – IEEE Transactions on Learning Technologies, 2024
Students learn not only directly from their teachers and books, but also by using their computers, tablets, and phones. Monitoring these learning environments creates new opportunities for teachers to track students' progress. In particular, this article is based on gathering real-time events as students interact with learning tools and materials…
Descriptors: Predictor Variables, Academic Achievement, Computer Assisted Instruction, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Shard; Kumar, Devesh; Koul, Sapna; Siringoringo, Hotniar – IEEE Transactions on Learning Technologies, 2023
Students' and instructors' adoption of "e-learning management systems (e-LMSs)" is critical to their success in a "virtual learning environment." Students can use "e-learning" to obtain instructional materials to supplement "traditional classroom" instruction. This study intends to highlight the important…
Descriptors: Foreign Countries, Students, Behavior, Intention
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9