NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tiahrt, Thomas; Hanus, Bartlomiej; Porter, Jason C. – Decision Sciences Journal of Innovative Education, 2022
Firms desire graduates capable of executing current and future business practices, many of which revolve around data. To meet those needs, we shifted the orientation of our required information systems course from technology to data. Instead of a survey of information systems, students learn the data acquisition-preparation-mining-presentation…
Descriptors: Information Systems, Information Science Education, Computer Software, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Williamson, Kimberly; Kizilcec, René F. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms such as Bayesian Knowledge Tracing (BKT) can provide students and teachers with helpful information about their progress towards learning objectives. Despite the popularity of BKT in the research community, the algorithm is not widely adopted in educational practice. This may be due to skepticism from users and…
Descriptors: Bayesian Statistics, Learning Processes, Computer Software, Learning Analytics
Peer reviewed Peer reviewed
Direct linkDirect link
Albert, Jim; Hu, Jingchen – Journal of Statistics Education, 2020
Bayesian statistics has gained great momentum since the computational developments of the 1990s. Gradually, advances in Bayesian methodology and software have made Bayesian techniques much more accessible to applied statisticians and, in turn, have potentially transformed Bayesian education at the undergraduate level. This article provides an…
Descriptors: Bayesian Statistics, Computation, Statistics Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Campo, Marcelo; Amandi, Analia; Biset, Julio Cesar – Education and Information Technologies, 2021
Moodle represents a great contribution to the educational world since it provides an evolving platform for Virtual Learning Management Systems (VLMS) that became a standard de facto for most of the educational institutions around the world. Through the pedagogical functions provided, it collects in the many globally spread out databases a huge…
Descriptors: Computer Software, Computer Simulation, Integrated Learning Systems, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Hu, Jingchen – Journal of Statistics Education, 2020
We propose a semester-long Bayesian statistics course for undergraduate students with calculus and probability background. We cultivate students' Bayesian thinking with Bayesian methods applied to real data problems. We leverage modern Bayesian computing techniques not only for implementing Bayesian methods, but also to deepen students'…
Descriptors: Bayesian Statistics, Statistics Education, Undergraduate Students, Computation
Siebrase, Benjamin – ProQuest LLC, 2018
Multilayer perceptron neural networks, Gaussian naive Bayes, and logistic regression classifiers were compared when used to make early predictions regarding one-year college student persistence. Two iterations of each model were built, utilizing a grid search process within 10-fold cross-validation in order to tune model parameters for optimal…
Descriptors: Classification, College Students, Academic Persistence, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Luo, Yong; Dimitrov, Dimiter M. – Educational and Psychological Measurement, 2019
Plausible values can be used to either estimate population-level statistics or compute point estimates of latent variables. While it is well known that five plausible values are usually sufficient for accurate estimation of population-level statistics in large-scale surveys, the minimum number of plausible values needed to obtain accurate latent…
Descriptors: Item Response Theory, Monte Carlo Methods, Markov Processes, Outcome Measures
Peer reviewed Peer reviewed
Direct linkDirect link
Ross, Andrew M. – College Mathematics Journal, 2012
To compute the probability of having a disease, given a positive test result, is a standard probability problem. The sensitivity and specificity of the test must be given and the prevalence of the disease. We ask how a test-maker might determine the tradeoff between sensitivity and specificity. Adding hypothetical costs for detecting or failing to…
Descriptors: Diseases, Probability, Bayesian Statistics, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Azevedo, Ana, Ed.; Azevedo, José, Ed. – IGI Global, 2019
E-assessments of students profoundly influence their motivation and play a key role in the educational process. Adapting assessment techniques to current technological advancements allows for effective pedagogical practices, learning processes, and student engagement. The "Handbook of Research on E-Assessment in Higher Education"…
Descriptors: Higher Education, Computer Assisted Testing, Multiple Choice Tests, Guides
Peer reviewed Peer reviewed
Direct linkDirect link
Haas, Timothy C. – International Journal of Distance Education Technologies, 2016
Before massive numbers of students can take online courses for college credit, the challenges of providing tutoring support, answers to student-posed questions, and the control of cheating will need to be addressed. These challenges are taken up here by developing an online course delivery system that runs in a cluster computing environment and is…
Descriptors: Online Courses, Educational Technology, Technology Uses in Education, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming – Applied Psychological Measurement, 2013
Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…
Descriptors: Item Response Theory, Models, Vertical Organization, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Huang, Hung-Yu; Wang, Wen-Chung – Educational and Psychological Measurement, 2014
In the social sciences, latent traits often have a hierarchical structure, and data can be sampled from multiple levels. Both hierarchical latent traits and multilevel data can occur simultaneously. In this study, we developed a general class of item response theory models to accommodate both hierarchical latent traits and multilevel data. The…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Computation, Test Reliability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Simonson, Michael, Ed. – Association for Educational Communications and Technology, 2015
For the thirty-eighth time, the Research and Theory Division of the Association for Educational Communications and Technology (AECT) is sponsoring the publication of these Proceedings. Papers published in this volume were presented at the annual AECT Convention in Indianapolis, Indiana. The Proceedings of AECT's Convention are published in two…
Descriptors: Information Technology, Educational Technology, Student Attitudes, Online Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Previous Page | Next Page »
Pages: 1  |  2