Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 10 |
Descriptor
Bayesian Statistics | 10 |
Statistical Inference | 10 |
Probability | 5 |
Foreign Countries | 4 |
Undergraduate Students | 4 |
Accuracy | 2 |
Causal Models | 2 |
College Students | 2 |
Computation | 2 |
Data Collection | 2 |
Introductory Courses | 2 |
More ▼ |
Source
Author
Bes, Benedicte | 1 |
Binder, Karin | 1 |
Braun, Leah T. | 1 |
Cornelisse, Joran | 1 |
Draws, Tim | 1 |
Fox, J.-P. | 1 |
Griffiths, Thomas L. | 1 |
Karabatsos, George | 1 |
Krauss, Stefan | 1 |
Lecoutre, Bruno | 1 |
Lecoutre, Marie-Paule | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 7 |
Reports - Evaluative | 3 |
Books | 1 |
Education Level
Higher Education | 10 |
Postsecondary Education | 10 |
Secondary Education | 2 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Two Year Colleges | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
What Works Clearinghouse Rating
Binder, Karin; Krauss, Stefan; Schmidmaier, Ralf; Braun, Leah T. – Advances in Health Sciences Education, 2021
When physicians are asked to determine the positive predictive value from the a priori probability of a disease and the sensitivity and false positive rate of a medical test (Bayesian reasoning), it often comes to misjudgments with serious consequences. In daily clinical practice, however, it is not only important that doctors receive a tool with…
Descriptors: Clinical Diagnosis, Efficiency, Probability, Bayesian Statistics
Puerta, Alejandro; Ramírez-Hassan, Andrés – Education Economics, 2022
We examine the effect of an integrity pilot campaign on undergraduates' behavior. As with many costly small-scale experiments and pilot programs, our statistical inference has to rely on small sample size. To tackle this issue, we perform a Bayesian retrospective power analysis. In our setup, a lecturer intentionally makes mistakes that favors…
Descriptors: Ethics, Integrity, Pilot Projects, Undergraduate Students
Page, Robert; Satake, Eiki – Journal of Education and Learning, 2017
While interest in Bayesian statistics has been growing in statistics education, the treatment of the topic is still inadequate in both textbooks and the classroom. Because so many fields of study lead to careers that involve a decision-making process requiring an understanding of Bayesian methods, it is becoming increasingly clear that Bayesian…
Descriptors: Probability, Bayesian Statistics, Hypothesis Testing, Statistical Inference
Sarafoglou, Alexandra; van der Heijden, Anna; Draws, Tim; Cornelisse, Joran; Wagenmakers, Eric-Jan; Marsman, Maarten – Psychology Learning and Teaching, 2022
Current developments in the statistics community suggest that modern statistics education should be structured holistically, that is, by allowing students to work with real data and to answer concrete statistical questions, but also by educating them about alternative frameworks, such as Bayesian inference. In this article, we describe how we…
Descriptors: Bayesian Statistics, Thinking Skills, Undergraduate Students, Psychology
Randall, David; Welser, Christopher – National Association of Scholars, 2018
A reproducibility crisis afflicts a wide range of scientific and social-scientific disciplines, from epidemiology to social psychology. Improper research techniques, lack of accountability, disciplinary and political groupthink, and a scientific culture biased toward producing positive results together have produced a critical state of affairs.…
Descriptors: Scientific Methodology, Replication (Evaluation), Scientific Research, Guidelines
Bes, Benedicte; Sloman, Steven; Lucas, Christopher G.; Raufaste, Eric – Cognitive Science, 2012
The study tests the hypothesis that conditional probability judgments can be influenced by causal links between the target event and the evidence even when the statistical relations among variables are held constant. Three experiments varied the causal structure relating three variables and found that (a) the target event was perceived as more…
Descriptors: Statistical Inference, Probability, Correlation, Causal Models
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Journal of Experimental Psychology: General, 2011
Predicting the future is a basic problem that people have to solve every day and a component of planning, decision making, memory, and causal reasoning. In this article, we present 5 experiments testing a Bayesian model of predicting the duration or extent of phenomena from their current state. This Bayesian model indicates how people should…
Descriptors: Bayesian Statistics, Statistical Inference, Models, Prior Learning
Karabatsos, George; Walker, Stephen G. – Society for Research on Educational Effectiveness, 2011
Karabatsos and Walker (2011) introduced a new Bayesian nonparametric (BNP) regression model. Through analyses of real and simulated data, they showed that the BNP regression model outperforms other parametric and nonparametric regression models of common use, in terms of predictive accuracy of the outcome (dependent) variable. The other,…
Descriptors: Bayesian Statistics, Regression (Statistics), Nonparametric Statistics, Statistical Inference
Fox, J.-P.; Wyrick, Cheryl – Journal of Educational and Behavioral Statistics, 2008
The randomized response technique ensures that individual item responses, denoted as true item responses, are randomized before observing them and so-called randomized item responses are observed. A relationship is specified between randomized item response data and true item response data. True item response data are modeled with a (non)linear…
Descriptors: Item Response Theory, Models, Markov Processes, Monte Carlo Methods
Lecoutre, Marie-Paule; Rovira, Katia; Lecoutre, Bruno; Poitevineau, Jacques – Statistics Education Research Journal, 2006
What people mean by randomness should be taken into account when teaching statistical inference. This experiment explored subjective beliefs about randomness and probability through two successive tasks. Subjects were asked to categorize 16 familiar items: 8 real items from everyday life experiences, and 8 stochastic items involving a repeatable…
Descriptors: Statistical Inference, Probability, Mathematics Instruction, College Mathematics