NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Šaric-Grgic, Ines; Grubišic, Ani; Šeric, Ljiljana; Robinson, Timothy J. – International Journal of Distance Education Technologies, 2020
The idea of clustering students according to their online learning behavior has the potential of providing more adaptive scaffolding by the intelligent tutoring system itself or by a human teacher. With the aim of identifying student groups who would benefit from the same intervention in AC-ware Tutor, this research examined online learning…
Descriptors: Learning Analytics, Intelligent Tutoring Systems, Grouping (Instructional Purposes), Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Blikstein, Paulo; Worsley, Marcelo; Piech, Chris; Sahami, Mehran; Cooper, Steven; Koller, Daphne – Journal of the Learning Sciences, 2014
New high-frequency, automated data collection and analysis algorithms could offer new insights into complex learning processes, especially for tasks in which students have opportunities to generate unique open-ended artifacts such as computer programs. These approaches should be particularly useful because the need for scalable project-based and…
Descriptors: Programming, Computer Science Education, Learning Processes, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Poor, G. Michael; Leventhal, Laura M.; Barnes, Julie; Hutchings, Duke R.; Albee, Paul; Campbell, Laura – ACM Transactions on Computing Education, 2012
Usability and accessibility have become increasingly important in computing curricula. This article briefly reviews how these concepts may be included in existing courses. The authors conducted a survey of student attitudes toward these issues at the start and end of a usability engineering course that included a group project with an…
Descriptors: Majors (Students), Student Projects, Student Attitudes, Engineering
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Amershi, Saleema; Conati, Cristina – Journal of Educational Data Mining, 2009
In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data).…
Descriptors: Supervision, Classification, Models, Educational Environment