NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Force Concept Inventory1
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Crossette, Nathan; Vignal, Michael; Wilcox, Bethany R. – Physical Review Physics Education Research, 2021
Student learning in upper-division thermal physics has not been studied to the same extent as in other courses like electromagnetism and quantum mechanics. Studies addressing reasoning and learning at the graduate level are even more limited. In this study, we conducted think-aloud interviews with eight graduate students involving questions…
Descriptors: Graduate Students, Scientific Concepts, Concept Formation, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Braithwaite, David W.; Sprague, Lauren – Cognitive Science, 2021
When, how, and why students use conceptual knowledge during math problem solving is not well understood. We propose that when solving routine problems, students are more likely to recruit conceptual knowledge if their procedural knowledge is weak than if it is strong, and that in this context, metacognitive processes, specifically feelings of…
Descriptors: Concept Formation, Mathematical Concepts, Metacognition, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Victoria Borish; H. J. Lewandowski – Physical Review Physics Education Research, 2025
As quantum technologies transition from the research laboratory into commercial development, the opportunities for students to begin their careers in this new quantum industry are increasing. With these new career pathways, more and more people are considering the best ways to educate students about quantum concepts and relevant skills. In…
Descriptors: Physics, Science Instruction, Quantum Mechanics, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Reinhard, Aaron; Felleson, Alex; Turner, Paula C.; Green, Maxwell – Physical Review Physics Education Research, 2022
We studied the impact of metacognitive reflections on recently-completed work as a way to improve the retention of newly learned problem-solving techniques. Students video recorded themselves talking through problems immediately after finishing them, completed ongoing problem-solving strategy maps or problem-sorting exercises, and filled out…
Descriptors: Metacognition, Problem Solving, Retention (Psychology), Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Tobler, Samuel; Köhler, Katja; Sinha, Tanmay; Hafen, Ernst; Kapur, Manu – CBE - Life Sciences Education, 2022
Undergraduate biology students' molecular-level understanding of stochastic (also referred to as random or noisy) processes found in biological systems is often limited to those examples discussed in class. Therefore, students frequently display little ability to accurately transfer their knowledge to other contexts. Furthermore, elaborate tools…
Descriptors: Undergraduate Students, Biology, Science Instruction, Molecular Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Frey, Regina F.; McDaniel, Mark A.; Bunce, Diane M.; Cahill, Michael J.; Perry, Martin D. – CBE - Life Sciences Education, 2020
We previously reported that students' concept-building approaches, identified a priori using a cognitive psychology laboratory task, extend to learning complex science, technology, engineering, and mathematics topics. This prior study examined student performance in both general and organic chemistry at a select research institution, after…
Descriptors: Concept Formation, Problem Solving, Active Learning, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Prinz, Anja; Golke, Stefanie; Wittwer, Jörg – Journal of Educational Psychology, 2019
Misconceptions impair not only learners' comprehension of a text but also the accuracy with which they judge their comprehension, that is, "metacomprehension accuracy." Refutation texts are beneficial to elicit conceptual-change processes and thus to overcome the detrimental impact of misconceptions on comprehension. However, it is…
Descriptors: Misconceptions, Accuracy, Metacognition, Reading Comprehension
Peer reviewed Peer reviewed
Direct linkDirect link
Burrows, Nikita L.; Mooring, Suazette Reid – Chemistry Education Research and Practice, 2015
General chemistry is the first undergraduate course in which students further develop their understanding of fundamental chemical concepts. Many of these fundamental topics highlight the numerous conceptual interconnections present in chemistry. However, many students possess incoherent knowledge structures regarding these topics. Therefore,…
Descriptors: Concept Mapping, Science Instruction, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Erceg, Nataša; Aviani, Ivica; Mešic, Vanes; Gluncic, Matko; Žauhar, Gordana – Physical Review Physics Education Research, 2016
In this study, we investigated students' understanding of concepts related to the microscopic model of gas. We thoroughly reviewed the relevant literature and conducted think alouds with students by asking them to answer open-ended questions about the kinetic molecular theory of gases. Thereafter, we transformed the open-ended questions into…
Descriptors: Foreign Countries, Scientific Concepts, Natural Resources, Concept Formation
Peer reviewed Peer reviewed
Direct linkDirect link
Tenbrink, Thora; Taylor, Holly A. – Journal of Problem Solving, 2015
Research on problem solving typically does not address tasks that involve following detailed and/or illustrated step-by-step instructions. Such tasks are not seen as cognitively challenging problems to be solved. In this paper, we challenge this assumption by analyzing verbal protocols collected during an Origami folding task. Participants…
Descriptors: Cognitive Processes, Problem Solving, Protocol Analysis, Task Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J. – Physical Review Special Topics - Physics Education Research, 2015
We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable…
Descriptors: Physics, Science Laboratories, Models, Interviews
Peer reviewed Peer reviewed
Direct linkDirect link
Wilcox, Bethany R.; Pollock, Steven J. – Physical Review Special Topics - Physics Education Research, 2015
The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…
Descriptors: Science Instruction, Undergraduate Study, College Science, Physics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Miller-Young, Janice E. – Canadian Journal for the Scholarship of Teaching and Learning, 2013
The premise of student-centered teaching is to respond to the ways in which students engage with the context and content of their learning, and therefore the purpose of this study was to find out how students visualize three-dimensional statics problems from two-dimensional diagrams early in a first-year engineering course. Think-alouds were…
Descriptors: Engineering Education, College Students, Protocol Analysis, Visualization
Peer reviewed Peer reviewed
Direct linkDirect link
Vahrenhold, Jan; Paul, Wolfgang – Computer Science Education, 2014
We report on the development, validation, and implementation of a collection of test items designed to detect misconceptions related to first-year computer science courses. To this end, we reworked the development scheme proposed by Almstrum et al. ("SIGCSE Bulletin" 38(4):132-145, 2006) to include students' artifacts and to…
Descriptors: Computer Science Education, Introductory Courses, Test Items, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Weintrop, David; Wilensky, Uri – Informatics in Education, 2014
Research on the effectiveness of introductory programming environments often relies on post-test measures and attitudinal surveys to support its claims; but such instruments lack the ability to identify any explanatory mechanisms that can account for the results. This paper reports on a study designed to address this issue. Using Noss and Hoyles'…
Descriptors: Programming, Programming Languages, Introductory Courses, Constructivism (Learning)
Previous Page | Next Page »
Pages: 1  |  2