NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Murad, Dina Fitria; Murad, Silvia Ayunda; Irsan, Muhamad – Journal of Educators Online, 2023
This study discusses the use of an online learning recommendation system as a smart solution related to changing the face-to-face learning process to online. This study uses user-based collaborative filtering, item-based collaborative filtering, and hybrid collaborative filtering. This research was conducted in two stages using the KNN machine…
Descriptors: Online Courses, Grades (Scholastic), Prediction, Context Effect
Peer reviewed Peer reviewed
Direct linkDirect link
Michael Ridley – College & Research Libraries, 2024
As part of a broader information literacy agenda, academic libraries are interested in advancing algorithmic literacy. Folk theories of algorithmic decision-making systems, such as recommender systems, can provide insights into designing and delivering enhanced algorithmic literacy initiatives. Users of the Spotify music recommendation systems…
Descriptors: Foreign Countries, Academic Libraries, Information Literacy, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pishtari, Gerti; Prieto, Luis P.; Rodriguez-Triana, Maria Jesus; Martinez-Maldonado, Roberto – Journal of Learning Analytics, 2022
This research was triggered by the identified need in literature for large-scale studies about the kinds of designs that teachers create for mobile learning (m-learning). These studies require analyses of large datasets of learning designs. The common approach followed by researchers when analyzing designs has been to manually classify them…
Descriptors: Scaling, Classification, Context Effect, Telecommunications