NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 6 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sourajit Ghosh; Md. Sarwar Kamal; Linkon Chowdhury; Biswarup Neogi; Nilanjan Dey; Robert Simon Sherratt – Education and Information Technologies, 2024
Students are the future of a nation. Personalizing student interests in higher education courses is one of the biggest challenges in higher education. Various AI and ML approaches have been used to study student behaviour. Existing AI and ML algorithms are used to identify features for various fields, such as behavioural analysis, economic…
Descriptors: Engineering Education, Artificial Intelligence, College Students, Student Interests
Peer reviewed Peer reviewed
Direct linkDirect link
Shernoff, David J. – AERA Online Paper Repository, 2023
In this paper, we report the results of a 3-year, quasi-experimental study comparing students' engagement and deep learning of course materials between students who took an undergraduate engineering course that used a video game approach to a control group. The video game, EduTorcs, provided challenges in which students devised control algorithms…
Descriptors: Learner Engagement, Undergraduate Students, Engineering Education, Video Games
Peer reviewed Peer reviewed
Direct linkDirect link
Saxena, Nitin Kumar; Chauhan, Bhavesh Kumar; Gouri, Sonia; Kumar, Ashwani; Gupta, Anmol – IEEE Transactions on Education, 2023
Contribution: The proposed work carries out the training and testing of the available data through an artificial neural network and develops a model to allocate the subject for maximum outcome. The system also provides percentagewise correlation among all the possible subjects of best fit to allocate among the faculty members. Background: Data…
Descriptors: Knowledge Management, Artificial Intelligence, Higher Education, Information Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Peter Hu; Yangqiuting Li; Chandralekha Singh – Physical Review Physics Education Research, 2024
Quantum information science and engineering (QISE) is a rapidly developing field that leverages the skills of experts from many disciplines to utilize the potential of quantum systems in a variety of applications. It requires talent from a wide variety of traditional fields, including physics, engineering, chemistry, and computer science, to name…
Descriptors: Quantum Mechanics, Computer Science Education, Inquiry, Teaching Methods
Taylor V. Williams – ProQuest LLC, 2022
Clustering, a prevalent class of machine learning (ML) algorithms used in data mining and pattern-finding--has increasingly helped engineering education researchers and educators see and understand assessment patterns at scale. However, a challenge remains to make ML-enabled educational inferences that are useful and reliable for research or…
Descriptors: Multivariate Analysis, Data Analysis, Student Evaluation, Large Group Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation