NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ayesha Sohail; Huma Akram – Pedagogical Research, 2025
The ability to properly evaluate one's own academic progress has long been considered a predictor of academic success. However, its distinctive role in the context of computational mathematics remains underexplored. Grounded in social cognitive theory, this study investigates the critical role of self-regulated learning (SRL) strategies in…
Descriptors: Undergraduate Students, Mathematics Education, Mathematics Achievement, Self Evaluation (Individuals)
Peer reviewed Peer reviewed
Direct linkDirect link
Burgiel, Heidi; Sadler, Philip M.; Sonnert, Gerhard – ACM Transactions on Computing Education, 2020
The number of computer science (CS) courses has been dramatically expanding in U.S. high schools (HS). In comparison with well-established courses in mathematics and science, little is known about how the decisions made by HS CS teachers regarding how and what to teach impact student performance later in introductory college CS courses. Drawing on…
Descriptors: Computer Science Education, High School Students, College Students, High School Teachers
Holm, Jennifer, Ed.; Mathieu-Soucy, Sarah, Ed. – Canadian Mathematics Education Study Group, 2019
In June 2018 the Canadian Mathematics Education Study Group/Groupe Canadien d'étude en didactique des mathématiques (CMESG/GCEDM) held its 42nd meeting in the idyllic setting of Squamish, British Columbia. This meeting marked the first time CMESG/GCEDM had been in British Columbia since 2010 and the first time it had been held at Quest University.…
Descriptors: Mathematics Education, Mathematics Teachers, Teaching Methods, Interdisciplinary Approach
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection