NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 11 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
John Pace; John Hansen; John Stewart – Physical Review Physics Education Research, 2024
Machine learning models were constructed to predict student performance in an introductory mechanics class at a large land-grant university in the United States using data from 2061 students. Students were classified as either being at risk of failing the course (earning a D or F) or not at risk (earning an A, B, or C). The models focused on…
Descriptors: Artificial Intelligence, Identification, At Risk Students, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Aydogdu, Seyhmus – Education and Information Technologies, 2020
Prediction of student performance is one of the most important subjects of educational data mining. Artificial neural networks are seen to be an effective tool in predicting student performance in e-learning environments. In the studies carried out with artificial neural networks, performance predictions based on student scores are generally made,…
Descriptors: Prediction, Academic Achievement, Electronic Learning, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Zabriskie, Cabot; Yang, Jie; DeVore, Seth; Stewart, John – Physical Review Physics Education Research, 2019
The use of machine learning and data mining techniques across many disciplines has exploded in recent years with the field of educational data mining growing significantly in the past 15 years. In this study, random forest and logistic regression models were used to construct early warning models of student success in introductory calculus-based…
Descriptors: Artificial Intelligence, Prediction, Introductory Courses, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
van Leeuwen, Anouschka; Bos, Nynke; van Ravenswaaij, Heleen; van Oostenrijk, Jurgen – British Journal of Educational Technology, 2019
In higher education, many studies have tried to establish which student activities predict achievement in blended courses, with the aim of optimizing course design. In this paper, we examine whether taking into account temporal patterns of student activity and instructional conditions of a course help to explain course performance. A course with a…
Descriptors: Higher Education, Blended Learning, Educational Technology, Technology Uses in Education
Guerrero, Tricia A.; Griffin, Thomas D.; Wiley, Jennifer – Grantee Submission, 2020
The Predict-Observe-Explain (POE) learning cycle improves understanding of the connection between empirical results and theoretical concepts when students engage in hands-on experimentation. This study explored whether training students to use a POE strategy when learning from social science texts that describe theories and experimental results…
Descriptors: Prediction, Observation, Reading Comprehension, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Patrzek, Justine; Sattler, Sebastian; van Veen, Floris; Grunschel, Carola; Fries, Stefan – Studies in Higher Education, 2015
In prior studies, academic procrastination has been discussed as an influencing factor of academic misconduct. However, empirical studies were conducted solely cross-sectionally and investigated only a few forms of academic misconduct. This large scale web-based study examined the responses of between 1359 and 2207 participants from different…
Descriptors: Time Management, Cheating, Foreign Countries, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Steury, Michael D.; Poteracki, James M.; Kelly, Kevin L.; Rennhack, Jonathan; Wehrwein, Erica A. – Advances in Physiology Education, 2016
Physiology instructors often are faced with the challenge of providing informative and educationally stimulating laboratories while trying to design them in such a way that encourages students to be actively involved in their own learning. With many laboratory experiments designed with simplicity and efficiency as the primary focus, it is…
Descriptors: Science Instruction, Discovery Learning, Problem Based Learning, Physiology
Peer reviewed Peer reviewed
Direct linkDirect link
Galyon, Charles E.; Blondin, Carolyn A.; Forbes, Bethany E.; Williams, Robert L. – Journal on Excellence in College Teaching, 2013
The authors developed a methodology for evaluating student answers on homework assigned in 3 sections (total N = 167) of an undergraduate educational psychology course. The potential of homework to predict exam scores was compared with that of two established predictors (critical thinking and participation in class discussion). The findings…
Descriptors: Homework, Undergraduate Students, Prediction, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barnes, Tiffany, Ed.; Chi, Min, Ed.; Feng, Mingyu, Ed. – International Educational Data Mining Society, 2016
The 9th International Conference on Educational Data Mining (EDM 2016) is held under the auspices of the International Educational Data Mining Society at the Sheraton Raleigh Hotel, in downtown Raleigh, North Carolina, in the USA. The conference, held June 29-July 2, 2016, follows the eight previous editions (Madrid 2015, London 2014, Memphis…
Descriptors: Data Analysis, Evidence Based Practice, Inquiry, Science Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection