NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Higher Education14
Postsecondary Education14
Audience
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for…1
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Melina Verger; Chunyang Fan; Sébastien Lallé; François Bouchet; Vanda Luengo – Journal of Educational Data Mining, 2024
Predictive student models are increasingly used in learning environments due to their ability to enhance educational outcomes and support stakeholders in making informed decisions. However, predictive models can be biased and produce unfair outcomes, leading to potential discrimination against certain individuals and harmful long-term…
Descriptors: Algorithms, Prediction, Bias, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Kaste, Joshua A. M.; Green, Antwan; Shachar-Hill, Yair – Biochemistry and Molecular Biology Education, 2023
The modeling of rates of biochemical reactions--fluxes--in metabolic networks is widely used for both basic biological research and biotechnological applications. A number of different modeling methods have been developed to estimate and predict fluxes, including kinetic and constraint-based (Metabolic Flux Analysis and flux balance analysis)…
Descriptors: Science Instruction, Teaching Methods, Prediction, Metabolism
Peer reviewed Peer reviewed
Direct linkDirect link
Kuroki, Masanori – Journal of Economic Education, 2023
As vast amounts of data have become available in business in recent years, the demand for data scientists has been rising. The author of this article provides a tutorial on how one entry-level machine learning competition from Kaggle, an online community for data scientists, can be integrated into an undergraduate econometrics course as an…
Descriptors: Statistics Education, Teaching Methods, Competition, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Peer reviewed Peer reviewed
Direct linkDirect link
Soltys, Michael; Dang, Hung D.; Reyes Reilly, Ginger; Soltys, Katharine – Strategic Enrollment Management Quarterly, 2021
A Machine Learning framework for predicting enrollment is proposed. The framework consists of Amazon Web Services SageMaker together with standard Python tools for data analytics, including Pandas, NumPy, MatPlotLib, and ScikitLearn. The tools are deployed with Jupyter Notebooks running on AWS SageMaker. Based on three years of enrollment history,…
Descriptors: Enrollment Management, Strategic Planning, Prediction, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Salas-Rueda, Ricardo-Adán – International Electronic Journal of Mathematics Education, 2020
This quantitative research aims to analyze the design and implementation of the Web Application on the educational process of the Linear Function (WALF) considering the TPACK (Technological Pedagogical and Content Knowledge) model and data science. The sample consists of 45 students who studied the Basic Math course at a Mexican university during…
Descriptors: Pedagogical Content Knowledge, Technological Literacy, Mathematics Instruction, Mexicans
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Xiaoming; Schwieger, Dana – Information Systems Education Journal, 2023
Rapid advancements and emergent technologies add an additional layer of complexity to preparing computer science and information technology higher education students for entering the post pandemic job market. Knowing and predicting employers' technical skill needs is essential for shaping curriculum development to address the emergent skill gap.…
Descriptors: Network Analysis, Employment Opportunities, Information Technology, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Wulandari, Stepani Sisca; Ali, Syaiful – Accounting Education, 2019
Although the eXtensible Business Reporting Language (XBRL) can improve the utilization of accounting information, the acceptance of this technology has been slower than anticipated. Some studies suggest that education can raise awareness of XBRL, thus improving its adoption in a country. This study describes the perspectives of accounting…
Descriptors: Accounting, Computer Software, Foreign Countries, Technology Integration
Peer reviewed Peer reviewed
Direct linkDirect link
Srour, F. Jordan; Karkoulian, Silva – International Journal of Social Research Methodology, 2022
The literature provides multiple measures of diversity along a single demographic dimension, but when it comes to studying the interaction of multiple diversity types (e.g. age, gender, and race), the field of useable measures diminishes. We present the use of decision trees as a machine learning technique to automatically identify the…
Descriptors: Diversity, Decision Making, Artificial Intelligence, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Onah, Daniel F. O.; Pang, Elaine L. L.; Sinclair, Jane E.; Uhomoibhi, James – International Journal of Information and Learning Technology, 2021
Purpose: Massive open online courses (MOOCs) have received wide publicity and many institutions have invested considerable effort in developing, promoting and delivering such courses. However, there are still many unresolved questions relating to MOOCs and their effectiveness in a blended-learning context. One of the major recurring issues raised…
Descriptors: MOOCs, Questionnaires, Learning Strategies, Blended Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Reilly, Joseph M.; Schneider, Bertrand – International Educational Data Mining Society, 2019
Collaborative problem solving in computer-supported environments is of critical importance to the modern workforce. Coworkers or collaborators must be able to co-create and navigate a shared problem space using discourse and non-verbal cues. Analyzing this discourse can give insights into how consensus is reached and can estimate the depth of…
Descriptors: Problem Solving, Discourse Analysis, Cooperative Learning, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Akar, Sacide Guzin Mazman; Altun, Arif – Contemporary Educational Technology, 2017
The purpose of this study is to investigate and conceptualize the ranks of importance of social cognitive variables on university students' computer programming performances. Spatial ability, working memory, self-efficacy, gender, prior knowledge and the universities students attend were taken as variables to be analyzed. The study has been…
Descriptors: Individual Differences, Learning Processes, Programming, Self Efficacy