NotesFAQContact Us
Collection
Advanced
Search Tips
Back to results
Peer reviewed Peer reviewed
Direct linkDirect link
ERIC Number: EJ1348671
Record Type: Journal
Publication Date: 2022
Pages: 26
Abstractor: As Provided
ISBN: N/A
ISSN: N/A
EISSN: EISSN-2365-9440
Available Date: N/A
Framework for Automatically Suggesting Remedial Actions to Help Students at Risk Based on Explainable ML and Rule-Based Models
International Journal of Educational Technology in Higher Education, v19 Article 49 2022
Higher education institutions often struggle with increased dropout rates, academic underachievement, and delayed graduations. One way in which these challenges can potentially be addressed is by better leveraging the student data stored in institutional databases and online learning platforms to predict students' academic performance early using advanced computational techniques. Several research efforts have focused on developing systems that can predict student performance. However, there is a need for a solution that can predict student performance and identify the factors that directly influence it. This paper aims to develop a model that accurately identifies students who are at risk of low performance, while also delineating the factors that contribute to this phenomenon. The model employs explainable machine learning (ML) techniques to delineate the factors that are associated with low performance and integrates rule-based model risk flags with the developed prediction system to improve the accuracy of performance predictions. This helps low-performing students to improve their academic metrics by implementing remedial actions that address the factors of concern. The model suggests proper remedial actions by mapping the students' performance in each identified checkpoint with the course learning outcomes (CLOs) and topics taught in the course. The list of possible actions is mapped to this checkpoint. The developed model can accurately distinguish students at risk (total grade < 70%) from students with good performance. The Area under the ROC Curve (AUC ROC) of binary classification model fed with four checkpoints reached 1.0. Proposed framework may aid the student to perform better, increase the institution's effectiveness and improve their reputations and rankings.
BioMed Central, Ltd. Available from: Springer Nature. 233 Spring Street, New York, NY 10013. Tel: 800-777-4643; Tel: 212-460-1500; Fax: 212-348-4505; e-mail: customerservice@springernature.com; Web site: https://www.springer.com/gp/biomedical-sciences
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A