Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 12 |
Descriptor
Foreign Countries | 8 |
Data Analysis | 7 |
Data Use | 6 |
Academic Achievement | 5 |
Data Collection | 4 |
High School Students | 4 |
Learning Analytics | 4 |
Prediction | 4 |
Secondary School Students | 4 |
Artificial Intelligence | 3 |
Algorithms | 2 |
More ▼ |
Source
Education and Information… | 12 |
Author
Afzal, Sher | 1 |
Botvin, Maya | 1 |
Castelli, Mauro | 1 |
Chang-Lei Gao | 1 |
Chao, Jie | 1 |
Chen, Chwen Jen | 1 |
Cherkaoui, Chihab | 1 |
Costa-Mendes, Ricardo | 1 |
Cruz-Jesus, Frederico | 1 |
Docheva, Mariya | 1 |
Doneva, Rositsa | 1 |
More ▼ |
Publication Type
Journal Articles | 12 |
Reports - Research | 11 |
Tests/Questionnaires | 2 |
Reports - Descriptive | 1 |
Education Level
Secondary Education | 12 |
High Schools | 4 |
Junior High Schools | 3 |
Middle Schools | 3 |
Elementary Education | 2 |
Elementary Secondary Education | 1 |
Grade 7 | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yu-Jie Wang; Chang-Lei Gao; Xin-Dong Ye – Education and Information Technologies, 2024
The continuous development of Educational Data Mining (EDM) and Learning Analytics (LA) technologies has provided more effective technical support for accurate early warning and interventions for student academic performance. However, the existing body of research on EDM and LA needs more empirical studies that provide feedback interventions, and…
Descriptors: Precision Teaching, Data Use, Intervention, Educational Improvement
Michos, Konstantinos; Schmitz, Maria-Luisa; Petko, Dominik – Education and Information Technologies, 2023
Since schools increasingly use digital platforms that provide educational data in digital formats, teacher data use, and data literacy have become a focus of educational research. One main challenge is whether teachers use digital data for pedagogical purposes, such as informing their teaching. We conducted a survey study with N = 1059 teachers in…
Descriptors: Secondary School Teachers, Prediction, Data Use, Data Analysis
Roslan, Muhammad Haziq Bin; Chen, Chwen Jen – Education and Information Technologies, 2023
This study attempts to predict secondary school students' performance in English and Mathematics subjects using data mining (DM) techniques. It aims to provide insights into predictors of students' performance in English and Mathematics, characteristics of students with different levels of performance, the most effective DM technique for students'…
Descriptors: Foreign Countries, Secondary School Students, Academic Achievement, English Instruction
Mihyun Son; Minsu Ha – Education and Information Technologies, 2025
Digital literacy is essential for scientific literacy in a digital world. Although the NGSS Practices include many activities that require digital literacy, most studies have examined digital literacy from a generic perspective rather than a curricular context. This study aimed to develop a self-report tool to measure elements of digital literacy…
Descriptors: Test Construction, Measures (Individuals), Digital Literacy, Scientific Literacy
Jiang, Shiyan; Qian, Yingxiao; Tang, Hengtao; Yalcinkaya, Rabia; Rosé, Carolyn P.; Chao, Jie; Finzer, William – Education and Information Technologies, 2023
As artificial intelligence (AI) technologies are increasingly pervasive in our daily lives, the need for students to understand the working mechanisms of AI technologies has become more urgent. Data modeling is an activity that has been proposed to engage students in reasoning about the working mechanism of AI technologies. While Computational…
Descriptors: Computation, Thinking Skills, Cognitive Processes, Artificial Intelligence
Yousafzai, Bashir Khan; Hayat, Maqsood; Afzal, Sher – Education and Information Technologies, 2020
The presented work is a student marks and grade prediction system using supervised machine learning techniques, the system is developed on the historic performance of students. The data used in this research is collected from Federal Board of Intermediate and Secondary Education Islamabad Pakistan, there are 7 regions in FBISE i.e. Punjab, Sindh,…
Descriptors: Artificial Intelligence, Foreign Countries, Prediction, Grades (Scholastic)
Marijn Martens; Ralf De Wolf; Lieven De Marez – Education and Information Technologies, 2024
Algorithmic systems such as Learning Analytics (LA) are driving the datafication and algorithmization of education. In this research, we focus on the appropriateness of LA systems from the perspective of parents and students in secondary education. Anchored in the contextual integrity framework (Nissenbaum, "Washington Law Review, 79,"…
Descriptors: Parent Attitudes, Student Attitudes, Learning Analytics, Algorithms
Gaftandzhieva, Silvia; Docheva, Mariya; Doneva, Rositsa – Education and Information Technologies, 2021
Many educational institutions use a large number of information systems to automate their activities for different stakeholders' groups -- learning management systems, student diary, library system, digital repositories, management system, etc. This leads to a significant increase in the volume and variety of data that can be captured, stored, and…
Descriptors: Foreign Countries, Learning Analytics, Secondary Education, Stakeholders
Botvin, Maya; Hershkovitz, Arnon; Forkosh-Baruch, Alona – Education and Information Technologies, 2023
Decision-making is key for teaching, with informed decisions promoting students and teachers most effectively. In this study, we explored data-driven decision-making processes of K-12 teachers (N = 302) at times of emergency remote teaching, as experienced during the COVID-19 pandemic outbreak in Israel. Using both quantitative and qualitative…
Descriptors: Foreign Countries, COVID-19, Pandemics, Emergency Programs
Göktepe Körpeoglu, Seda; Göktepe Yildiz, Sevda – Education and Information Technologies, 2023
Examining students' attitudes towards STEM (science, technology, engineering, and mathematics) fields starting from middle school level is important in their career choices and future planning. However, there is a need to investigate which variables affect students' attitudes towards STEM. Here, we aimed to estimate middle school students'…
Descriptors: Comparative Analysis, Algorithms, Data Collection, Student Attitudes
Costa-Mendes, Ricardo; Oliveira, Tiago; Castelli, Mauro; Cruz-Jesus, Frederico – Education and Information Technologies, 2021
This article uses an anonymous 2014-15 school year dataset from the Directorate-General for Statistics of Education and Science (DGEEC) of the Portuguese Ministry of Education as a means to carry out a predictive power comparison between the classic multilinear regression model and a chosen set of machine learning algorithms. A multilinear…
Descriptors: Foreign Countries, High School Students, Grades (Scholastic), Electronic Learning
Qazdar, Aimad; Er-Raha, Brahim; Cherkaoui, Chihab; Mammass, Driss – Education and Information Technologies, 2019
The use of machine learning with educational data mining (EDM) to predict learner performance has always been an important research area. Predicting academic results is one of the solutions that aims to monitor the progress of students and anticipates students at risk of failing the academic pathways. In this paper, we present a framework for…
Descriptors: Data Analysis, Academic Achievement, At Risk Students, High School Students