Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 17 |
Descriptor
Bayesian Statistics | 17 |
Data Analysis | 17 |
Foreign Countries | 10 |
Prediction | 10 |
Secondary School Students | 9 |
Intelligent Tutoring Systems | 7 |
Models | 7 |
Accuracy | 6 |
Achievement Tests | 6 |
Computation | 6 |
International Assessment | 6 |
More ▼ |
Source
Author
Kaplan, David | 3 |
Barnes, Tiffany, Ed. | 2 |
Foorman, Barbara R. | 2 |
Kershaw, Sarah | 2 |
Koon, Sharon | 2 |
Lyu, Weicong | 2 |
Petscher, Yaacov | 2 |
Romero, Cristobal, Ed. | 2 |
Yavuz, Sinan | 2 |
Cavalli-Sforza, Violetta, Ed. | 1 |
Chao, Jie | 1 |
More ▼ |
Publication Type
Reports - Research | 13 |
Journal Articles | 6 |
Speeches/Meeting Papers | 4 |
Collected Works - Proceedings | 3 |
Reports - Evaluative | 1 |
Education Level
Secondary Education | 17 |
Junior High Schools | 7 |
Middle Schools | 7 |
Elementary Education | 6 |
Grade 9 | 6 |
High Schools | 6 |
Elementary Secondary Education | 5 |
Grade 8 | 5 |
Grade 10 | 4 |
Grade 7 | 4 |
Higher Education | 4 |
More ▼ |
Audience
Location
Florida | 2 |
North Carolina | 2 |
Australia | 1 |
Brazil | 1 |
China | 1 |
Czech Republic | 1 |
Germany | 1 |
Iceland | 1 |
Israel | 1 |
Massachusetts | 1 |
Netherlands | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kaplan, David; Chen, Jianschen; Yavuz, Sinan; Lyu, Weicong – Grantee Submission, 2022
The purpose of this paper is to demonstrate and evaluate the use of "Bayesian dynamic borrowing"(Viele et al, in Pharm Stat 13:41-54, 2014) as a means of systematically utilizing historical information with specific applications to large-scale educational assessments. Dynamic borrowing via Bayesian hierarchical models is a special case…
Descriptors: Bayesian Statistics, Models, Prediction, Accuracy
Kaplan, David; Chen, Jianshen; Lyu, Weicong; Yavuz, Sinan – Large-scale Assessments in Education, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
David Kaplan; Jianshen Chen; Weicong Lyu; Sinan Yavuz – Grantee Submission, 2023
The purpose of this paper is to extend and evaluate methods of "Bayesian historical borrowing" applied to longitudinal data with a focus on parameter recovery and predictive performance. Bayesian historical borrowing allows researchers to utilize information from previous data sources and to adjust the extent of borrowing based on the…
Descriptors: Bayesian Statistics, Longitudinal Studies, Children, Surveys
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Kubsch, Marcus; Stamer, Insa; Steiner, Mara; Neumann, Knut; Parchmann, Ilka – Practical Assessment, Research & Evaluation, 2021
In light of the replication crisis in psychology, null-hypothesis significance testing (NHST) and "p"-values have been heavily criticized and various alternatives have been proposed, ranging from slight modifications of the current paradigm to banning "p"-values from journals. Since the physics education research community…
Descriptors: Data Analysis, Bayesian Statistics, Educational Research, Science Education
Xing, Wanli; Li, Chenglu; Chen, Guanhua; Huang, Xudong; Chao, Jie; Massicotte, Joyce; Xie, Charles – Journal of Educational Computing Research, 2021
Integrating engineering design into K-12 curricula is increasingly important as engineering has been incorporated into many STEM education standards. However, the ill-structured and open-ended nature of engineering design makes it difficult for an instructor to keep track of the design processes of all students simultaneously and provide…
Descriptors: Engineering Education, Design, Feedback (Response), Student Evaluation
Wu, Mike; Davis, Richard L.; Domingue, Benjamin W.; Piech, Chris; Goodman, Noah – International Educational Data Mining Society, 2020
Item Response Theory (IRT) is a ubiquitous model for understanding humans based on their responses to questions, used in fields as diverse as education, medicine and psychology. Large modern datasets offer opportunities to capture more nuances in human behavior, potentially improving test scoring and better informing public policy. Yet larger…
Descriptors: Item Response Theory, Accuracy, Data Analysis, Public Policy
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
Khajah, Mohammad; Lindsey, Robert V.; Mozer, Michael C. – International Educational Data Mining Society, 2016
In theoretical cognitive science, there is a tension between highly structured models whose parameters have a direct psychological interpretation and highly complex, general-purpose models whose parameters and representations are difficult to interpret. The former typically provide more insight into cognition but the latter often perform better.…
Descriptors: Bayesian Statistics, Data Analysis, Prediction, Intelligent Tutoring Systems
Kaplan, David; McCarty, Alyn Turner – Large-scale Assessments in Education, 2013
Background: In the context of international large scale assessments, it is often not feasible to implement a complete survey of all relevant populations. For example, the OECD Program for International Student Assessment surveys both students and schools, but does not obtain information from teachers. In contrast the OECD Teaching and Learning…
Descriptors: Measurement, International Assessment, Student Surveys, Teacher Surveys
Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R. – Regional Educational Laboratory Southeast, 2014
Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…
Descriptors: Reading Comprehension, Reading Achievement, Elementary School Students, Secondary School Students
Petscher, Yaacov; Kershaw, Sarah; Koon, Sharon; Foorman, Barbara R. – Regional Educational Laboratory Southeast, 2014
Districts and schools use progress monitoring to assess student progress, to identify students who fail to respond to intervention, and to further adapt instruction to student needs. Researchers and practitioners often use progress monitoring data to estimate student achievement growth (slope) and evaluate changes in performance over time for…
Descriptors: Response to Intervention, Achievement Gains, High Stakes Tests, Prediction
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis
Pardos, Zachary A.; Heffernan, Neil T. – International Working Group on Educational Data Mining, 2009
Researchers who make tutoring systems would like to know which sequences of educational content lead to the most effective learning by their students. The majority of data collected in many ITS systems consist of answers to a group of questions of a given skill often presented in a random sequence. Following work that identifies which items…
Descriptors: Data Analysis, Bayesian Statistics, Statistical Analysis, Problem Sets
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Previous Page | Next Page ยป
Pages: 1 | 2