Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 10 |
Descriptor
Source
International Educational… | 4 |
Grantee Submission | 2 |
International Working Group… | 2 |
Educational Technology… | 1 |
Journal of Educational Data… | 1 |
Author
Publication Type
Reports - Research | 7 |
Speeches/Meeting Papers | 4 |
Collected Works - Proceedings | 3 |
Journal Articles | 2 |
Education Level
Secondary Education | 10 |
Junior High Schools | 8 |
Middle Schools | 8 |
Elementary Education | 5 |
Grade 8 | 5 |
High Schools | 5 |
Higher Education | 4 |
Postsecondary Education | 4 |
Grade 9 | 3 |
Elementary Secondary Education | 2 |
Grade 10 | 2 |
More ▼ |
Audience
Location
Massachusetts | 2 |
North Carolina | 2 |
Australia | 1 |
Brazil | 1 |
China | 1 |
Czech Republic | 1 |
Indiana | 1 |
Israel | 1 |
Netherlands | 1 |
Pennsylvania | 1 |
Slovakia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
What Works Clearinghouse Rating
Frick, Theodore W.; Myers, Rodney D.; Dagli, Cesur – Educational Technology Research and Development, 2022
In this naturalistic design-research study, we tracked 172,417 learning journeys of students who were interacting with an online resource, the Indiana University Plagiarism Tutorials and Tests (IPTAT) at https://plagiarism.iu.edu. IPTAT was designed using First Principles of Instruction (FPI; Merrill in Educ Technol Res Dev 50:43-59, 2002,…
Descriptors: Time, Educational Principles, Instructional Design, Instructional Effectiveness
Gobert, Janice D.; Moussavi, Raha; Li, Haiying; Sao Pedro, Michael; Dickler, Rachel – Grantee Submission, 2018
This chapter addresses students' data interpretation, a key NGSS inquiry practice, with which students have several different types of difficulties. In this work, we unpack the difficulties associated with data interpretation from those associated with warranting claims. We do this within the context of Inq-ITS (Inquiry Intelligent Tutoring…
Descriptors: Scaffolding (Teaching Technique), Data Interpretation, Intelligent Tutoring Systems, Science Instruction
Liu, Ran; Koedinger, Kenneth R. K – International Educational Data Mining Society, 2017
Research in Educational Data Mining could benefit from greater efforts to ensure that models yield reliable, valid, and interpretable parameter estimates. These efforts have especially been lacking for individualized student-parameter models. We collected two datasets from a sizable student population with excellent "depth" -- that is,…
Descriptors: Data Analysis, Intelligent Tutoring Systems, Bayesian Statistics, Pretests Posttests
Khajah, Mohammad; Lindsey, Robert V.; Mozer, Michael C. – International Educational Data Mining Society, 2016
In theoretical cognitive science, there is a tension between highly structured models whose parameters have a direct psychological interpretation and highly complex, general-purpose models whose parameters and representations are difficult to interpret. The former typically provide more insight into cognition but the latter often perform better.…
Descriptors: Bayesian Statistics, Data Analysis, Prediction, Intelligent Tutoring Systems
Sao Pedro, Michael; Jiang, Yang; Paquette, Luc; Baker, Ryan S.; Gobert, Janice – Grantee Submission, 2014
Students conducted inquiry using simulations within a rich learning environment for 4 science topics. By applying educational data mining to students' log data, assessment metrics were generated for two key inquiry skills, testing stated hypotheses and designing controlled experiments. Three models were then developed to analyze the transfer of…
Descriptors: Simulation, Transfer of Training, Bayesian Statistics, Inquiry
Sabourin, Jennifer L.; Rowe, Jonathan P.; Mott, Bradford W.; Lester, James C. – Journal of Educational Data Mining, 2013
Over the past decade, there has been growing interest in real-time assessment of student engagement and motivation during interactions with educational software. Detecting symptoms of disengagement, such as off-task behavior, has shown considerable promise for understanding students' motivational characteristics during learning. In this paper, we…
Descriptors: Student Behavior, Classification, Learner Engagement, Data Analysis
Pardos, Zachary A.; Heffernan, Neil T. – International Working Group on Educational Data Mining, 2009
Researchers who make tutoring systems would like to know which sequences of educational content lead to the most effective learning by their students. The majority of data collected in many ITS systems consist of answers to a group of questions of a given skill often presented in a random sequence. Following work that identifies which items…
Descriptors: Data Analysis, Bayesian Statistics, Statistical Analysis, Problem Sets
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries