NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Logacev, Pavel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
A number of studies have found evidence for the so-called "ambiguity advantage," that is, faster processing of ambiguous sentences compared with unambiguous counterparts. While a number of proposals regarding the mechanism underlying this phenomenon have been made, the empirical evidence so far is far from unequivocal. It is compatible…
Descriptors: Phrase Structure, Accuracy, Ambiguity (Semantics), Sentences
Peer reviewed Peer reviewed
Direct linkDirect link
Pohl, Steffi; Gräfe, Linda; Rose, Norman – Educational and Psychological Measurement, 2014
Data from competence tests usually show a number of missing responses on test items due to both omitted and not-reached items. Different approaches for dealing with missing responses exist, and there are no clear guidelines on which of those to use. While classical approaches rely on an ignorable missing data mechanism, the most recently developed…
Descriptors: Test Items, Achievement Tests, Item Response Theory, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hagmayer, York; Sloman, Steven A. – Journal of Experimental Psychology: General, 2009
Causal considerations must be relevant for those making decisions. Whether to bring an umbrella or leave it at home depends on the causal consequences of these options. However, most current decision theories do not address causal reasoning. Here, the authors propose a causal model theory of choice based on causal Bayes nets. The critical ideas…
Descriptors: Causal Models, Inferences, Decision Making, Intervention
Peer reviewed Peer reviewed
Direct linkDirect link
Fahrmeir, Ludwig; Raach, Alexander – Psychometrika, 2007
In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…
Descriptors: Markov Processes, Social Sciences, Monte Carlo Methods, Bayesian Statistics