Descriptor
Author
Biasca, Karyn | 1 |
Blaine, Steven | 1 |
Brown, Lee F. | 1 |
Cooney, David O. | 1 |
Da Silva, Francisco A. | 1 |
Davis, Richard A. | 1 |
Douglas, J. M. | 1 |
Falconer, John L. | 1 |
Felder, Richard M. | 1 |
Frey, Douglas D. | 1 |
Furter, William F. | 1 |
More ▼ |
Publication Type
Guides - Classroom - Teacher | 30 |
Journal Articles | 30 |
Reports - Descriptive | 9 |
Opinion Papers | 1 |
Reports - Research | 1 |
Education Level
Audience
Practitioners | 27 |
Teachers | 15 |
Administrators | 1 |
Location
Laws, Policies, & Programs
Assessments and Surveys
Learning Style Inventory | 1 |
What Works Clearinghouse Rating

Ryan, Michael E. – Journal of College Science Teaching, 2001
Discusses nuclear power and the consequences of a nuclear accident. Covers issues ranging from chemical process safety to risk management of chemical industries to the ethical responsibilities of the chemical engineer. (Author/ASK)
Descriptors: Chemical Engineering, College Science, Higher Education, Nuclear Power Plants

Reeves, Deborah E.; Schork, F. Joseph – Chemical Engineering Education, 1988
Presents six problems from an alternative approach to homework traditionally given to follow-up lectures. Stresses the advantage of longer term exercises which allow for creativity and independence on the part of the student. Problems include: "System Model,""Open-Loop Simulation,""PID Control,""Dahlin…
Descriptors: Chemical Engineering, College Science, Engineering Education, Higher Education

Furter, William F.; And Others – Chemical Engineering Education, 1989
Presents a problem related to mass balances for checking the consistency of measured data from a process. Provides the solution to the problem with diagrams and calculation tables. (YP)
Descriptors: Chemical Engineering, College Science, Engineering Education, Higher Education

Brown, Lee F.; Falconer, John L. – Chemical Engineering Education, 1987
Explains the advantages of using molar quantities in chemical reactor design. Advocates the use of differential versions of reactor mass balances rather than the integrated forms. Provides specific examples and cases to illustrate the principles. (ML)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Engineering Education

Klusacek, K.; And Others – Chemical Engineering Education, 1989
Illustrates how triangular diagrams can aid in presenting some of the rather complex transient interactions that occur among gas and surface species during heterogeneous catalytic reactions. The basic equations and numerical examples are described. Classroom use of the triangular diagram is discussed. Several diagrams and graphs are provided. (YP)
Descriptors: Chemical Engineering, Chemical Equilibrium, Chemical Reactions, College Science

Slaughter, Joseph M.; And Others – Chemical Engineering Education, 1991
Three mathematics software packages, MathCAD, Point Five, and TK Solver Plus, are described and compared. The packages were rated on the accompanying documentation, ease of learning, ease of use, matrix operations, equation solving capability, versatility, use of units, generation of graphs and tables, readability of output, and overall…
Descriptors: Chemical Engineering, Chemistry, College Science, Computation

Kwon, K. C.; And Others – Chemical Engineering Education, 1987
Provides an overview of an experiment on reaction kinetics of the anthracene-hydrogen system. Includes a description of the laboratory equipment, procedures, and data analysis requirements. Points out the advantages of the recommended technique. (ML)
Descriptors: Chemical Engineering, Chemical Reactions, College Science, Engineering Education

Roat, S. D.; Melsheimer, S. S. – Chemical Engineering Education, 1987
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Descriptors: Chemical Engineering, College Science, Computer Assisted Instruction, Computer Uses in Education

Mendoza-Bustos, S. A.; And Others – Chemical Engineering Education, 1991
Described is a project where students gain experience in handling large volumes of hazardous materials, process start up and shut down, equipment failures, operational variations, scaling up, equipment cleaning, and run-time scheduling while working in a modern pilot plant. Included are the system design, experimental procedures, and results. (KR)
Descriptors: Chemical Engineering, Chemistry, College Science, Experiential Learning

Savage, Phillip E.; Blaine, Steven – Chemical Engineering Education, 1991
A set of educational materials that have been developed which deal with chemical engineering applications in emerging technologies is described. The organization and the content of the supplemental textbook materials and how they can be integrated into an undergraduate reaction engineering course are discussed. (KR)
Descriptors: Chemical Engineering, Chemical Reactions, Chemistry, College Science

Da Silva, Francisco A.; And Others – Chemical Engineering Education, 1991
Described is a computer software package suitable for teaching and research in the area of multicomponent vapor-liquid equilibrium. This program, which has a complete database, can accomplish phase-equilibrium calculations using various models and graph the results. (KR)
Descriptors: Chemical Engineering, Chemical Equilibrium, Chemistry, College Science

Helfferich, Friedrich G. – Chemical Engineering Education, 1989
Points out a different and much simpler approach for the study of equilibria of multiple and heterogeneous chemical reactions. A simulation on coal methanation is used to teach the technique. An example and the methodology used are provided. (MVL)
Descriptors: Chemical Engineering, Chemical Equilibrium, Chemical Reactions, Coal

McCready, Mark J. – Chemical Engineering Education, 1989
A course where students were required to choose projects and provide studies of the feasibility, consumer need, and process design is discussed. Other projects such as advertising campaigns used to encourage student creativity are discussed. The need to keep second semester seniors interested is stressed. (MVL)
Descriptors: Chemical Engineering, Chemical Industry, Chemical Reactions, College Science

Hanzevack, E. L.; McKean, R. A. – Chemical Engineering Education, 1991
Discussed is the importance of engineering students having effective communication skills so they will be able to discuss their work, present their findings, and propose a course of action. Suggestions for organizing and delivering presentations are included. (KR)
Descriptors: Chemical Engineering, Chemistry, College Science, Communication Skills

Misovich, Michael; Biasca, Karyn – Chemical Engineering Education, 1991
Discussed are the possible uses of spreadsheets in the undergraduate curriculum in chemical engineering classes. The advantages and flexibility of spreadsheets, spreadsheet instruction, graphing capabilities, assignment examples, and conclusions are described. (KR)
Descriptors: Chemical Engineering, Chemistry, College Science, Computation
Previous Page | Next Page ยป
Pages: 1 | 2