Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 3 |
Descriptor
Source
Physics Education | 12 |
Physics Teacher | 10 |
Journal of Computers in… | 5 |
Science Teacher | 2 |
Education and Computing | 1 |
Journal of Science Education… | 1 |
Mathematics Teacher | 1 |
NSTA Press | 1 |
Author
Chee, Chia Teck | 2 |
Adie, G. | 1 |
Barragues, J. I. | 1 |
Belloni, Mario | 1 |
Christian, Wolfgang | 1 |
Cox, Anne J. | 1 |
Craig, T. W. | 1 |
Dancy, Melissa | 1 |
Demana, Franklin | 1 |
Deutsch, Freeman | 1 |
Dittmann, H. | 1 |
More ▼ |
Publication Type
Education Level
High Schools | 2 |
Secondary Education | 2 |
Grade 11 | 1 |
Higher Education | 1 |
Audience
Teachers | 18 |
Practitioners | 15 |
Location
New Jersey | 1 |
Sweden | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Samsonau, Sergey V. – Physics Education, 2018
This paper presents a set of laboratory classes to be taught as a part of a 1 year calculus-based physics class. It is composed of 7 modules designed to bring together experiments and computer simulations. Each module uses both simulations and experiments to address a phenomenon under study, and lasts for 3 weeks (21 weeks total for the whole…
Descriptors: Physics, Science Instruction, Science Laboratories, Learning Modules
Johnson, Carla C., Ed.; Walton, Janet B., Ed.; Peters-Burton, Erin E., Ed. – NSTA Press, 2019
What if you could challenge your 11th graders to figure out the best response to a partial meltdown at a nuclear reactor in fictional Gammatown, USA? With this volume in the "STEM Road Map Curriculum Series," you can! "Radioactivity" outlines a journey that will steer your students toward authentic problem solving while…
Descriptors: Grade 11, High School Students, STEM Education, Nuclear Energy
Staehling, Erica – Science Teacher, 2015
This article describes a lesson on the greenhouse effect in which students explore blackbody radiation and Wien's law. The lesson, which has been tested in a variety of high school physics classrooms, uses probeware and online simulations and combines two well-established instructional strategies: the 5E Learning Cycle (Bybee et al. 2006) and the…
Descriptors: Lesson Plans, Climate, Scientific Concepts, Scientific Principles

Serway, Raymond A.; And Others – Physics Teacher, 1995
Presents the theory behind the mechanics demonstration that involves projecting a ball vertically upward from a ballistic cart moving along an inclined plane. The measured overshoot is believed to be due, in part, to the presence of rolling friction and the inertial properties of the cart wheels. (JRH)
Descriptors: Computer Simulation, Demonstrations (Science), Mechanics (Physics), Motion

Chee, Chia Teck; Hong, Chia Yee – Physics Education, 1999
Experiments in an accelerating frame are hard to perform. Illustrates how simple computer software allows sufficiently rapid and accurate measurements to be made on an arrangement of weights and pulleys known as Atwood's machine. (Author/CCM)
Descriptors: Acceleration (Physics), Computer Simulation, Experiments, Higher Education

Mallinckrodt, A. John – Physics Teacher, 1999
Offers a relatively simple analysis of the asymmetrical "sticking" and rolling behavior of two balls, one steel and one rubber, on an incline. Describes an Interactive Physics (TM) simulation designed to study the problem and gives rough experimental results. (WRM)
Descriptors: Computer Simulation, Force, Higher Education, Mechanics (Physics)

Sadler, Philip M.; Whitney, Charles A.; Shore, Linda; Deutsch, Freeman – Journal of Science Education and Technology, 1999
Describes Wavemaker, a simulation environment developed to graphically reveal the behavior of periodic systems using a series of increasingly sophisticated visual tools. Results indicate that the software is helpful in connecting real to simulated systems. (Author/CCM)
Descriptors: Computer Simulation, Educational Technology, Elementary Secondary Education, Mechanics (Physics)

Wilkinson, Ladye K. – Physics Teacher, 1995
Describes the use of the computer software "Graphs and Tracks" a tool for interactive computer instruction, in teaching one-dimensional kinematics concepts and connecting these concepts to their graphical representations. Provides ordering information. (JRH)
Descriptors: Acceleration (Physics), Computer Simulation, Computer Software, Graphs

Pagonis, Vasilis; Drake, Russel; Morgan, Michael; Peters, Todd; Riddle, Chris; Rollins, Karen – Physics Teacher, 1999
Presents five models of the human body as a mechanical system which can be used in introductory physics courses: human arms as levers, humans falling from small heights, a model of the human back, collisions during football, and the rotating gymnast. Gives ideas for discussions and activities, including Interactive Physics (TM) simulations. (WRM)
Descriptors: Biomechanics, Computer Simulation, Force, Higher Education
Zahraee, Mohammad A.; And Others – 1991
This paper discusses two software packages used in kinematics courses at Purdue University, Calumet (Indiana) and some algorithms written by students for cam design. The first software package, 4BAR, requires the user to define the particular four bar linkage in terms of lengths of the individual links and the angle and distance to the coupler…
Descriptors: Acceleration (Physics), Computer Assisted Design, Computer Assisted Instruction, Computer Simulation

Nemirovsky, Ricardo; Tinker, Robert – Journal of Computers in Mathematics and Science Teaching, 1993
Describes software, hardware, and devices that were designed to provide students with an environment to experiment with basic ideas of mechanics, including nonlinear dynamics. Examines the behavior of a Lorenzian water wheel by comparing experimental data with theoretical results obtained from computer-based sensors. (MDH)
Descriptors: Chaos Theory, Computer Assisted Instruction, Computer Simulation, Computer Software
2000
This CD-ROM consists of simulation software that allows students to conduct countless experiments using 20 Java simulators and curriculum units that explore light and color, forces and motion, sound and waves, static electricity and magnetism, current electricity, the nature of matter, and a unit on underpinnings. Setups can be designed by the…
Descriptors: Acoustics, Computer Simulation, Curriculum Development, Electricity

Demana, Franklin; Waits, Bert K. – Mathematics Teacher, 1993
Discusses solutions to real-world linear particle-motion problems using graphing calculators to simulate the motion and traditional analytic methods of calculus. Applications include (1) changing circular or curvilinear motion into linear motion and (2) linear particle accelerators in physics. (MDH)
Descriptors: Acceleration (Physics), Calculus, Computer Assisted Instruction, Computer Simulation

Dittmann, H.; Schneider, W. B. – Physics Teacher, 1992
Describes a project that uses a computer and a dot matrix printer to simulate the holographic recording process of simple object structures. The process' four steps are (1) superposition of waves; (2) representing the superposition of a plane reference wave on the monitor screen; (3) photographic reduction of the images; and (4) reconstruction of…
Descriptors: Computer Assisted Instruction, Computer Simulation, Geometric Constructions, High Schools

Field, Richard – Physics Education, 1995
Describes a spreadsheet that can be used to show the changes in intensity of Fraunhofer diffraction patterns produced by a single and double slits arrangement. Discusses a practical demonstration of diffraction that allows data to be logged and entered into the spreadsheet. (DDR)
Descriptors: Computer Simulation, Demonstrations (Science), Optics, Physics