Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 11 |
Descriptor
Intervals | 11 |
Meta Analysis | 10 |
Effect Size | 4 |
Medical Research | 4 |
Simulation | 4 |
Statistical Analysis | 4 |
Bayesian Statistics | 3 |
Comparative Analysis | 3 |
Computation | 3 |
Models | 3 |
Computer Software | 2 |
More ▼ |
Source
Research Synthesis Methods | 11 |
Author
Cao, Wenhao | 2 |
Chu, Haitao | 2 |
Higgins, Julian P. T. | 2 |
Knapp, Guido | 2 |
Kuss, Oliver | 2 |
Langan, Dean | 2 |
Siegel, Lianne | 2 |
Apostoloski, Nenad | 1 |
Bazerbachi, Fateh | 1 |
Becker, Gerhild | 1 |
Bender, Ralf | 1 |
More ▼ |
Publication Type
Information Analyses | 11 |
Journal Articles | 11 |
Reports - Research | 3 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Jiang, Ziren; Cao, Wenhao; Chu, Haitao; Bazerbachi, Fateh; Siegel, Lianne – Research Synthesis Methods, 2023
A reference interval, or an interval in which a prespecified proportion of measurements from a healthy population are expected to fall, is used to determine whether a person's measurement is typical of a healthy individual. For a specific biomarker, multiple published studies may provide data collected from healthy participants. A reference…
Descriptors: Intervals, Computation, Meta Analysis, Measurement
Cao, Wenhao; Siegel, Lianne; Zhou, Jincheng; Zhu, Motao; Tong, Tiejun; Chen, Yong; Chu, Haitao – Research Synthesis Methods, 2021
A reference interval provides a basis for physicians to determine whether a measurement is typical of a healthy individual. It can be interpreted as a prediction interval for a new individual from the overall population. However, a reference interval based on a single study may not be representative of the broader population. Meta-analysis can…
Descriptors: Meta Analysis, Statistical Analysis, Intervals, Computation
Brannick, Michael T.; French, Kimberly A.; Rothstein, Hannah R.; Kiselica, Andrew M.; Apostoloski, Nenad – Research Synthesis Methods, 2021
Tolerance intervals provide a bracket intended to contain a percentage (e.g., 80%) of a population distribution given sample estimates of the mean and variance. In random-effects meta-analysis, tolerance intervals should contain researcher-specified proportions of underlying population effect sizes. Using Monte Carlo simulation, we investigated…
Descriptors: Meta Analysis, Credibility, Intervals, Effect Size
Siemens, Waldemar; Meerpohl, Joerg J.; Rohe, Miriam S.; Buroh, Sabine; Schwarzer, Guido; Becker, Gerhild – Research Synthesis Methods, 2022
Using the Hartung-Knapp method and 95% prediction intervals (PIs) in random-effects meta-analyses is recommended by experts but rarely applied. Therefore, we aimed to reevaluate statistically significant meta-analyses using the Hartung-Knapp method and 95% PIs. In this methodological study, three databases were searched from January 2010 to July…
Descriptors: Cancer, Meta Analysis, Medical Research, Patients
Weber, Frank; Knapp, Guido; Glass, Änne; Kundt, Günther; Ickstadt, Katja – Research Synthesis Methods, 2021
There exists a variety of interval estimators for the overall treatment effect in a random-effects meta-analysis. A recent literature review summarizing existing methods suggested that in most situations, the Hartung-Knapp/Sidik-Jonkman (HKSJ) method was preferable. However, a quantitative comparison of those methods in a common simulation study…
Descriptors: Meta Analysis, Computation, Intervals, Statistical Analysis
Veroniki, Areti Angeliki; Jackson, Dan; Bender, Ralf; Kuss, Oliver; Langan, Dean; Higgins, Julian P. T.; Knapp, Guido; Salanti, Georgia – Research Synthesis Methods, 2019
Meta-analyses are an important tool within systematic reviews to estimate the overall effect size and its confidence interval for an outcome of interest. If heterogeneity between the results of the relevant studies is anticipated, then a random-effects model is often preferred for analysis. In this model, a prediction interval for the true effect…
Descriptors: Meta Analysis, Effect Size, Simulation, Comparative Analysis
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Hoyer, Annika; Hirt, Stefan; Kuss, Oliver – Research Synthesis Methods, 2018
Systematic reviews and meta-analyses are the cornerstones of evidence-based medicine and inform treatment, diagnosis, or prevention of individual patients as well as policy decisions in health care. Statistical methods for the meta-analysis of intervention studies are well established today. Meta-analysis for diagnostic accuracy trials has also…
Descriptors: Medicine, Evidence Based Practice, Research Methodology, Meta Analysis
Günhan, Burak Kürsad; Röver, Christian; Friede, Tim – Research Synthesis Methods, 2020
Meta-analyses of clinical trials targeting rare events face particular challenges when the data lack adequate numbers of events for all treatment arms. Especially when the number of studies is low, standard random-effects meta-analysis methods can lead to serious distortions because of such data sparsity. To overcome this, we suggest the use of…
Descriptors: Meta Analysis, Medical Research, Drug Therapy, Bayesian Statistics
Langan, Dean; Higgins, Julian P. T.; Simmonds, Mark – Research Synthesis Methods, 2017
Random-effects meta-analysis methods include an estimate of between-study heterogeneity variance. We present a systematic review of simulation studies comparing the performance of different estimation methods for this parameter. We summarise the performance of methods in relation to estimation of heterogeneity and of the overall effect estimate,…
Descriptors: Meta Analysis, Simulation, Comparative Analysis, Intervals
Robertson, Clare; Ramsay, Craig; Gurung, Tara; Mowatt, Graham; Pickard, Robert; Sharma, Pawana – Research Synthesis Methods, 2014
We describe our experience of using a modified version of the Cochrane risk of bias (RoB) tool for randomised and non-randomised comparative studies. Objectives: (1) To assess time to complete RoB assessment; (2) To assess inter-rater agreement; and (3) To explore the association between RoB and treatment effect size. Methods: Cochrane risk of…
Descriptors: Risk, Randomized Controlled Trials, Research Design, Comparative Analysis