NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Proposition 13 (California…1
What Works Clearinghouse Rating
Showing 1 to 15 of 59 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fabricio Trujillo; Marcelo Pozo; Gabriela Suntaxi – Journal of Technology and Science Education, 2025
This paper presents a systematic literature review of using Machine Learning (ML) techniques in higher education career recommendation. Despite the growing interest in leveraging Artificial Intelligence (AI) for personalized academic guidance, no previous reviews have synthesized the diverse methodologies in this field. Following the Kitchenham…
Descriptors: Artificial Intelligence, Higher Education, Career Guidance, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Daniele Di Mitri; Maurizio Gabbrielli; Olivia Levrini – IEEE Transactions on Learning Technologies, 2024
Knowledge tracing is a well-known problem in AI for education, consisting of monitoring how the knowledge state of students changes during the learning process and accurately predicting their performance in future exercises. In recent years, many advances have been made thanks to various machine learning and deep learning techniques. Despite their…
Descriptors: Artificial Intelligence, Prior Learning, Knowledge Management, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Samah AlKhuzaey; Floriana Grasso; Terry R. Payne; Valentina Tamma – International Journal of Artificial Intelligence in Education, 2024
Designing and constructing pedagogical tests that contain items (i.e. questions) which measure various types of skills for different levels of students equitably is a challenging task. Teachers and item writers alike need to ensure that the quality of assessment materials is consistent, if student evaluations are to be objective and effective.…
Descriptors: Test Items, Test Construction, Difficulty Level, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Seo, Michael; Furukawa, Toshi A.; Karyotaki, Eirini; Efthimiou, Orestis – Research Synthesis Methods, 2023
Clinical prediction models are widely used in modern clinical practice. Such models are often developed using individual patient data (IPD) from a single study, but often there are IPD available from multiple studies. This allows using meta-analytical methods for developing prediction models, increasing power and precision. Different studies,…
Descriptors: Prediction, Models, Patients, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Ramaswami, Gomathy; Susnjak, Teo; Mathrani, Anuradha; Umer, Rahila – Technology, Knowledge and Learning, 2023
Learning analytics dashboards (LADs) provide educators and students with a comprehensive snapshot of the learning domain. Visualizations showcasing student learning behavioral patterns can help students gain greater self-awareness of their learning progression, and at the same time assist educators in identifying those students who may be facing…
Descriptors: Prediction, Learning Analytics, Learning Management Systems, Identification
Peer reviewed Peer reviewed
Direct linkDirect link
Khan, Anupam; Ghosh, Soumya K. – Education and Information Technologies, 2021
Student performance modelling is one of the challenging and popular research topics in educational data mining (EDM). Multiple factors influence the performance in non-linear ways; thus making this field more attractive to the researchers. The widespread availability of educational datasets further catalyse this interestingness, especially in…
Descriptors: Academic Achievement, Prediction, Data Analysis, Meta Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Sackstein, Suzanne; Matthee, Machdel; Weilbach, Lizette – Education and Information Technologies, 2023
Research that employs theory provides a framework and structure in which complex phenomenon, can be understood. While many theories have been developed to study people's technology usage, the plurality of perspectives offered are complex to navigate due to the diverse range of problems and topics addressed and the varied theoretical foundations…
Descriptors: Educational Theories, Models, Technology Uses in Education, Hermeneutics
Peer reviewed Peer reviewed
Direct linkDirect link
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Tonghui – Journal of Educators Online, 2023
The early detection of students' academic performance or final grades helps instructors prepare their online courses. In the Open University Learning Analytics Dataset, I found many online students clicked the course materials before the first day of class. This study aims to investigate how data mining models can use this student interaction data…
Descriptors: College Students, Online Courses, Academic Achievement, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Uglanova, Irina – Practical Assessment, Research & Evaluation, 2021
There is increased use of Bayesian networks (BN) in educational assessment. In psychometrics, BN serves as a measurement model with high flexibility, suitable to model educational assessment data with a complex structure. BN is a novel psychometric approach and not all aspects of its application are well-known. The article aims to provide the…
Descriptors: Bayesian Statistics, Educational Assessment, Psychometrics, Criticism
Peer reviewed Peer reviewed
Direct linkDirect link
Salas-Pilco, Sdenka Zobeida; Yang, Yuqin – International Journal of Educational Technology in Higher Education, 2022
Over the last decade, there has been great research interest in the application of artificial intelligence (AI) in various fields, such as medicine, finance, and law. Recently, there has been a research focus on the application of AI in education, where it has great potential. Therefore, a systematic review of the literature on AI in education is…
Descriptors: Artificial Intelligence, Higher Education, Foreign Countries, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Liu, Hongda; Geng, Jiejun; Yao, Pinbo – Journal of Intelligence, 2021
In recent years, workplace envy has gradually become a hot research topic for organizational behavior. Scholars have explored the antecedents and consequences of envy following the traditional research paradigm. The latest leadership theory also provides new ideas for its development. Although the traditional methods continue to optimize the…
Descriptors: Bibliometrics, Psychological Patterns, Correlation, Work Environment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bryan, Victoria M.; Mayer, John D. – Journal of Intelligence, 2021
The Cattell-Horn-Carroll (CHC) or three-stratum model of intelligence envisions human intelligence as a hierarchy. General intelligence (g) is situated at the top, under which are a group of broad intelligences such as verbal, visuospatial processing, and quantitative knowledge that pertain to more specific areas of reasoning. Some broad…
Descriptors: Culture Fair Tests, Intelligence Tests, Intelligence, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Moreno-Marcos, Pedro Manuel; Alario-Hoyos, Carlos; Munoz-Merino, Pedro J.; Kloos, Carlos Delgado – IEEE Transactions on Learning Technologies, 2019
This paper surveys the state of the art on prediction in MOOCs through a systematic literature review (SLR). The main objectives are: first, to identify the characteristics of the MOOCs used for prediction, second, to describe the prediction outcomes, third, to classify the prediction features, fourth, to determine the techniques used to predict…
Descriptors: Prediction, Large Group Instruction, Online Courses, Educational Research
Previous Page | Next Page ยป
Pages: 1  |  2  |  3  |  4