NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Keller, Lena; Lüdtke, Oliver; Preckel, Franzis; Brunner, Martin – Educational Psychology Review, 2023
Intersectional approaches have become increasingly important for explaining educational inequalities because they help to improve our understanding of how individual experiences are shaped by simultaneous membership in multiple social categories that are associated with interconnected systems of power, privilege, and oppression. For years, there…
Descriptors: Equal Education, Intersectionality, Hierarchical Linear Modeling, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Bash, Kirstie L.; Howell Smith, Michelle C.; Trantham, Pam S. – Journal of Mixed Methods Research, 2021
The use of advanced quantitative methods within mixed methods research has been investigated in a limited capacity. In particular, hierarchical linear models are a popular approach to account for multilevel data, such as students within schools, but its use and value as the quantitative strand in a mixed methods study remains unknown. This article…
Descriptors: Hierarchical Linear Modeling, Mixed Methods Research, Research Design, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Joo, Seang-hwane; Wang, Yan; Ferron, John M. – AERA Online Paper Repository, 2017
Multiple-baseline studies provide meta-analysts the opportunity to compute effect sizes based on either within-series comparisons of treatment phase to baseline phase observations, or time specific between-series comparisons of observations from those that have started treatment to observations of those that are still in baseline. The advantage of…
Descriptors: Meta Analysis, Effect Size, Hierarchical Linear Modeling, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel M.; Stapleton, Laura M. – Educational Psychology Review, 2016
Multilevel models are an increasingly popular method to analyze data that originate from a clustered or hierarchical structure. To effectively utilize multilevel models, one must have an adequately large number of clusters; otherwise, some model parameters will be estimated with bias. The goals for this paper are to (1) raise awareness of the…
Descriptors: Hierarchical Linear Modeling, Statistical Analysis, Sample Size, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Gage, Nicholas A.; Lewis, Timothy J. – Journal of Special Education, 2014
The identification of evidence-based practices continues to provoke issues of disagreement across multiple fields. One area of contention is the role of single-subject design (SSD) research in providing scientific evidence. The debate about SSD's utility centers on three issues: sample size, effect size, and serial dependence. One potential…
Descriptors: Hierarchical Linear Modeling, Meta Analysis, Research Design, Sample Size