Publication Date
In 2025 | 11 |
Since 2024 | 28 |
Since 2021 (last 5 years) | 158 |
Since 2016 (last 10 years) | 976 |
Since 2006 (last 20 years) | 1655 |
Descriptor
Source
Author
Publication Type
Journal Articles | 1658 |
Reports - Research | 1658 |
Tests/Questionnaires | 51 |
Information Analyses | 25 |
Speeches/Meeting Papers | 2 |
Numerical/Quantitative Data | 1 |
Education Level
Audience
Practitioners | 2 |
Teachers | 2 |
Policymakers | 1 |
Researchers | 1 |
Location
Germany | 57 |
Netherlands | 40 |
United States | 40 |
Canada | 37 |
Texas | 35 |
Australia | 34 |
China | 34 |
Belgium | 31 |
California | 29 |
Taiwan | 29 |
South Korea | 28 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Meets WWC Standards without Reservations | 7 |
Meets WWC Standards with or without Reservations | 20 |
Does not meet standards | 9 |
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Dongho Shin; Yongyun Shin; Nao Hagiwara – Grantee Submission, 2025
We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates C includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Multivariate Analysis, Data Analysis
Bruno Arpino; Silvia Bacci; Leonardo Grilli; Raffaele Guetto; Carla Rampichini – Evaluation Review, 2025
We consider estimating the effect of a treatment on a given outcome measured on subjects tested both before and after treatment assignment in observational studies. A vast literature compares the competing approaches of modelling the post-test score conditionally on the pre-test score versus modelling the difference, namely, the gain score. Our…
Descriptors: Scores, Pretesting, Conditioning, Achievement Gains
Francis L. Huang – Large-scale Assessments in Education, 2024
The use of large-scale assessments (LSAs) in education has grown in the past decade though analysis of LSAs using multilevel models (MLMs) using R has been limited. A reason for its limited use may be due to the complexity of incorporating both plausible values and weighted analyses in the multilevel analyses of LSA data. We provide additional…
Descriptors: Hierarchical Linear Modeling, Evaluation Methods, Educational Assessment, Data Analysis
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Thomas Suesse; David Steel; Mark Tranmer – Sociological Methods & Research, 2024
Multilevel models are often used to account for the hierarchical structure of social data and the inherent dependencies to produce estimates of regression coefficients, variance components associated with each level, and accurate standard errors. Social network analysis is another important approach to analysing complex data that incorporate the…
Descriptors: Social Networks, Intergroup Relations, Population Groups, Sociometric Techniques
Lane, Sean P.; Kelleher, Bridgette L. – Developmental Psychology, 2023
Recruiting participants for studies of early-life longitudinal development is challenging, often resulting in practical upper bounds in sample size and missing data due to attrition. These factors pose risks for the statistical power of such studies depending on the intended analytic model. One mitigation strategy is to increase measurement…
Descriptors: Longitudinal Studies, Child Development, Hierarchical Linear Modeling, Research Design
Mariola Moeyaert; Panpan Yang; Yukang Xue – Journal of Experimental Education, 2024
We have entered an era in which scientific evidence increasingly informs research practice and policy. As there is an exponential increase in the use of single-case experimental designs (SCEDs) to evaluate intervention effectiveness, there is accumulating evidence available for quantitative synthesis. Consequently, there is a growing interest in…
Descriptors: Meta Analysis, Research Design, Synthesis, Patients
Man, Kaiwen; Schumacker, Randall; Morell, Monica; Wang, Yurou – Educational and Psychological Measurement, 2022
While hierarchical linear modeling is often used in social science research, the assumption of normally distributed residuals at the individual and cluster levels can be violated in empirical data. Previous studies have focused on the effects of nonnormality at either lower or higher level(s) separately. However, the violation of the normality…
Descriptors: Hierarchical Linear Modeling, Statistical Distributions, Statistical Bias, Computation
Tong Wu; Stella Y. Kim; Carl Westine; Michelle Boyer – Journal of Educational Measurement, 2025
While significant attention has been given to test equating to ensure score comparability, limited research has explored equating methods for rater-mediated assessments, where human raters inherently introduce error. If not properly addressed, these errors can undermine score interchangeability and test validity. This study proposes an equating…
Descriptors: Item Response Theory, Evaluators, Error of Measurement, Test Validity
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Wei Li; Yanli Xie; Dung Pham; Nianbo Dong; Jessaca Spybrook; Benjamin Kelcey – Asia Pacific Education Review, 2024
Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of educational interventions, where the entire clusters (e.g., schools) are randomly assigned to treatment or control conditions. This study introduces statistical methods for designing and analyzing two-level (e.g., students nested within schools) and three-level…
Descriptors: Research Design, Multivariate Analysis, Randomized Controlled Trials, Hierarchical Linear Modeling
Cox, Kyle; Kelcey, Benjamin – Educational and Psychological Measurement, 2023
Multilevel structural equation models (MSEMs) are well suited for educational research because they accommodate complex systems involving latent variables in multilevel settings. Estimation using Croon's bias-corrected factor score (BCFS) path estimation has recently been extended to MSEMs and demonstrated promise with limited sample sizes. This…
Descriptors: Structural Equation Models, Educational Research, Hierarchical Linear Modeling, Sample Size
Zsuzsa Bakk; Roberto Di Mari; Jennifer Oser; Jouni Kuha – Structural Equation Modeling: A Multidisciplinary Journal, 2022
In this article, we present a two-stage estimation approach applied to multilevel latent class analysis (LCA) with covariates. We separate the estimation of the measurement and structural model. This makes the extension of the structural model computationally efficient. We investigate the robustness against misspecifications of the proposed…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Computation, Measurement
Mangino, Anthony A.; Finch, W. Holmes – Educational and Psychological Measurement, 2021
Oftentimes in many fields of the social and natural sciences, data are obtained within a nested structure (e.g., students within schools). To effectively analyze data with such a structure, multilevel models are frequently employed. The present study utilizes a Monte Carlo simulation to compare several novel multilevel classification algorithms…
Descriptors: Prediction, Hierarchical Linear Modeling, Classification, Bayesian Statistics