Publication Date
In 2025 | 21 |
Since 2024 | 52 |
Since 2021 (last 5 years) | 69 |
Since 2016 (last 10 years) | 69 |
Since 2006 (last 20 years) | 69 |
Descriptor
Source
Education and Information… | 69 |
Author
Okan Bulut | 2 |
Shan Li | 2 |
Tenzin Doleck | 2 |
Abdeldjalil, Ouahabi | 1 |
Abdelhadi Raihani | 1 |
Abdelhadi Sahia | 1 |
Abdelmadjid Benmachiche | 1 |
Abdulkadir Palanci | 1 |
Abdullahi Yusuf | 1 |
Abdulmohsen Algarni | 1 |
Adil Baqach | 1 |
More ▼ |
Publication Type
Journal Articles | 69 |
Reports - Research | 62 |
Information Analyses | 5 |
Reports - Evaluative | 4 |
Tests/Questionnaires | 4 |
Education Level
Higher Education | 23 |
Postsecondary Education | 23 |
Secondary Education | 8 |
Elementary Education | 3 |
High Schools | 3 |
Junior High Schools | 3 |
Middle Schools | 3 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Intermediate Grades | 1 |
Audience
Location
Algeria | 1 |
Bangladesh | 1 |
China | 1 |
Florida | 1 |
Ghana | 1 |
India | 1 |
Pakistan | 1 |
Portugal | 1 |
Saudi Arabia | 1 |
Spain | 1 |
Turkey | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Pu Wang; Yifeng Lin; Tiesong Zhao – Education and Information Technologies, 2025
With the emergence of Artificial Intelligence (AI), smart education has become an attractive topic. In a smart education system, automated classrooms and examination rooms could help reduce the economic cost of teaching, and thus improve teaching efficiency. However, existing AI algorithms suffer from low surveillance accuracies and high…
Descriptors: Supervision, Artificial Intelligence, Technology Uses in Education, Automation
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Forming a Robust Team in Educational Scenarios Using Genetic Algorithm with Partial Repair Operators
Lichen Zhang; Chenchen Li; Tong Li; Zijuan Lu – Education and Information Technologies, 2025
Team has been widely applied in various fields, in which the collaboration efficiency of a team is the main consideration under the constraints of skill requirements. In educational scenarios, an educational institution usually builds a team of students with different skills to attend a competition, in which team communication cost and team…
Descriptors: Teamwork, Cooperative Learning, Competition, Interpersonal Relationship
Gulnara Z. Karimova; Yevgeniya D. Kim; Amir Shirkhanbeik – Education and Information Technologies, 2025
This exploratory study investigates the convergence of marketing communications and AI-powered technology in higher education, adopting a perspective on student interactions with generative AI tools. Through a comprehensive content analysis of learners' responses, we employed a blend of manual scrutiny, Python-generated Word Cloud, and Latent…
Descriptors: Artificial Intelligence, Marketing, Student Attitudes, Higher Education
Long Zhang; Khe Foon Hew – Education and Information Technologies, 2025
Although self-regulated learning (SRL) plays an important role in supporting online learning performance, the lack of student self-regulation skills poses a persistent problem to many educators. Recommender systems have the potential to promote SRL by delivering personalized feedback and tailoring learning strategies to meet individual learners'…
Descriptors: Independent Study, Electronic Learning, Online Courses, Artificial Intelligence
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
R. K. Kapila Vani; P. Jayashree – Education and Information Technologies, 2025
Emotions of learners are fundamental and significant in e-learning as they encourage learning. Machine learning models are presented in the literature to look at how emotions may affect e-learning results that are improved and optimized. Nevertheless, the models that have been suggested so far are appropriate for offline mode, whereby data for…
Descriptors: Electronic Learning, Psychological Patterns, Artificial Intelligence, Models
Guiyun Feng; Honghui Chen – Education and Information Technologies, 2025
Data mining has been successfully and widely utilized in educational information systems, and an important research field has been formed, which is educational data mining. Process mining inherits the characteristics of data mining which can not only use historical data in the system to analyze learning behavior and predict academic performance,…
Descriptors: Educational Research, Artificial Intelligence, Data Use, Algorithms
Sourajit Ghosh; Md. Sarwar Kamal; Linkon Chowdhury; Biswarup Neogi; Nilanjan Dey; Robert Simon Sherratt – Education and Information Technologies, 2024
Students are the future of a nation. Personalizing student interests in higher education courses is one of the biggest challenges in higher education. Various AI and ML approaches have been used to study student behaviour. Existing AI and ML algorithms are used to identify features for various fields, such as behavioural analysis, economic…
Descriptors: Engineering Education, Artificial Intelligence, College Students, Student Interests
Adil Boughida; Mohamed Nadjib Kouahla; Yacine Lafifi – Education and Information Technologies, 2024
In e-learning environments, most adaptive systems do not consider the learner's emotional state when recommending activities for learning difficulties, blockages, or demotivation. In this paper, we propose a new approach of emotion-based adaptation in e-learning environments. The system will allow recommendation resources/activities to motivate…
Descriptors: Psychological Patterns, Electronic Learning, Educational Environment, Models
Mouna Ben Said; Yessine Hadj Kacem; Abdulmohsen Algarni; Atef Masmoudi – Education and Information Technologies, 2024
In the current educational landscape, where large amounts of data are being produced by institutions, Educational Data Mining (EDM) emerges as a critical discipline that plays a crucial role in extracting knowledge from this data to help academic policymakers make decisions. EDM has a primary focus on predicting students' academic performance.…
Descriptors: Prediction, Academic Achievement, Artificial Intelligence, Algorithms
Hayat Sahlaoui; El Arbi Abdellaoui Alaoui; Said Agoujil; Anand Nayyar – Education and Information Technologies, 2024
Predicting student performance using educational data is a significant area of machine learning research. However, class imbalance in datasets and the challenge of developing interpretable models can hinder accuracy. This study compares different variations of the Synthetic Minority Oversampling Technique (SMOTE) combined with classification…
Descriptors: Sampling, Classification, Algorithms, Prediction
Munish Saini; Eshan Sengupta; Naman Sharma – Education and Information Technologies, 2025
To be an effective teacher, one must possess strong learning abilities. Developing lesson planning, pursuing learning objectives, and assessing post-lesson accomplishments all these depend on reflection and ongoing learning. As education is context-specific, the iterative process of preparing, reflecting, and improving is what makes teaching…
Descriptors: Artificial Intelligence, Technology Uses in Education, Nonverbal Communication, Feedback (Response)
Sadhu Prasad Kar; Amit Kumar Das; Rajeev Chatterjee; Jyotsna Kumar Mandal – Education and Information Technologies, 2024
Technology Enabled Learning (TEL) has a major impact on the learning adaptability of the learners. During the COVID-19 pandemic, there has been a drastic change in the learning methodology. The adaptability of learners from the various domains, levels and age has been a significant component of research in context to education. In this paper, the…
Descriptors: Online Courses, Artificial Intelligence, Technology Uses in Education, Student Adjustment
Guher Gorgun; Okan Bulut – Education and Information Technologies, 2024
In light of the widespread adoption of technology-enhanced learning and assessment platforms, there is a growing demand for innovative, high-quality, and diverse assessment questions. Automatic Question Generation (AQG) has emerged as a valuable solution, enabling educators and assessment developers to efficiently produce a large volume of test…
Descriptors: Computer Assisted Testing, Test Construction, Test Items, Automation