Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 13 |
Since 2006 (last 20 years) | 26 |
Descriptor
Computer Software | 27 |
Markov Processes | 27 |
Monte Carlo Methods | 20 |
Bayesian Statistics | 16 |
Computation | 13 |
Models | 13 |
Item Response Theory | 12 |
Comparative Analysis | 7 |
Foreign Countries | 6 |
Statistical Analysis | 6 |
Test Items | 5 |
More ▼ |
Source
Author
Jiao, Hong | 3 |
Huang, Hung-Yu | 2 |
Hung, Lai-Fa | 2 |
Luo, Yong | 2 |
Wang, Wen-Chung | 2 |
Berenson, Mark | 1 |
Bolt, Daniel M. | 1 |
Briggs, Derek C. | 1 |
Chen, Po-Hsi | 1 |
Clifton, James P. | 1 |
Cobb, Patrice R. | 1 |
More ▼ |
Publication Type
Journal Articles | 27 |
Reports - Research | 16 |
Reports - Descriptive | 8 |
Reports - Evaluative | 3 |
Book/Product Reviews | 1 |
Guides - Classroom - Teacher | 1 |
Education Level
Higher Education | 6 |
Postsecondary Education | 5 |
Elementary Education | 2 |
Secondary Education | 2 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
High Schools | 1 |
Intermediate Grades | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Researchers | 2 |
Students | 2 |
Teachers | 2 |
Practitioners | 1 |
Location
Taiwan | 4 |
Saudi Arabia | 1 |
Slovenia | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
Students Evaluation of… | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Lei Guo; Wenjie Zhou; Xiao Li – Journal of Educational and Behavioral Statistics, 2024
The testlet design is very popular in educational and psychological assessments. This article proposes a new cognitive diagnosis model, the multiple-choice cognitive diagnostic testlet (MC-CDT) model for tests using testlets consisting of MC items. The MC-CDT model uses the original examinees' responses to MC items instead of dichotomously scored…
Descriptors: Multiple Choice Tests, Diagnostic Tests, Accuracy, Computer Software
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis
Zhan, Peida; Jiao, Hong; Man, Kaiwen; Wang, Lijun – Journal of Educational and Behavioral Statistics, 2019
In this article, we systematically introduce the just another Gibbs sampler (JAGS) software program to fit common Bayesian cognitive diagnosis models (CDMs) including the deterministic inputs, noisy "and" gate model; the deterministic inputs, noisy "or" gate model; the linear logistic model; the reduced reparameterized unified…
Descriptors: Bayesian Statistics, Computer Software, Models, Test Items
Ross, Kevin; Sun, Dennis L. – Journal of Statistics Education, 2019
Simulation is an effective tool for analyzing probability models as well as for facilitating understanding of concepts in probability and statistics. Unfortunately, implementing a simulation from scratch often requires users to think about programming issues that are not relevant to the simulation itself. We have developed a Python package called…
Descriptors: Simulation, Statistics, Computer Software, Programming Languages
Leventhal, Brian C.; Stone, Clement A. – Measurement: Interdisciplinary Research and Perspectives, 2018
Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…
Descriptors: Bayesian Statistics, Item Response Theory, Models, Psychometrics
McNeish, Daniel – Educational and Psychological Measurement, 2017
In behavioral sciences broadly, estimating growth models with Bayesian methods is becoming increasingly common, especially to combat small samples common with longitudinal data. Although Mplus is becoming an increasingly common program for applied research employing Bayesian methods, the limited selection of prior distributions for the elements of…
Descriptors: Models, Bayesian Statistics, Statistical Analysis, Computer Software
Luo, Yong; Dimitrov, Dimiter M. – Educational and Psychological Measurement, 2019
Plausible values can be used to either estimate population-level statistics or compute point estimates of latent variables. While it is well known that five plausible values are usually sufficient for accurate estimation of population-level statistics in large-scale surveys, the minimum number of plausible values needed to obtain accurate latent…
Descriptors: Item Response Theory, Monte Carlo Methods, Markov Processes, Outcome Measures
Yavuz, Guler; Hambleton, Ronald K. – Educational and Psychological Measurement, 2017
Application of MIRT modeling procedures is dependent on the quality of parameter estimates provided by the estimation software and techniques used. This study investigated model parameter recovery of two popular MIRT packages, BMIRT and flexMIRT, under some common measurement conditions. These packages were specifically selected to investigate the…
Descriptors: Item Response Theory, Models, Comparative Analysis, Computer Software
Luo, Yong; Jiao, Hong – Educational and Psychological Measurement, 2018
Stan is a new Bayesian statistical software program that implements the powerful and efficient Hamiltonian Monte Carlo (HMC) algorithm. To date there is not a source that systematically provides Stan code for various item response theory (IRT) models. This article provides Stan code for three representative IRT models, including the…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Computer Software
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R. – Journal of Educational and Behavioral Statistics, 2016
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Descriptors: Monte Carlo Methods, Markov Processes, Computer Software, Models
Lavbic, Dejan; Matek, Tadej; Zrnec, Aljaž – Interactive Learning Environments, 2017
Today's software industry requires individuals who are proficient in as many programming languages as possible. Structured query language (SQL), as an adopted standard, is no exception, as it is the most widely used query language to retrieve and manipulate data. However, the process of learning SQL turns out to be challenging. The need for a…
Descriptors: Evaluation Methods, Information Systems, Intelligent Tutoring Systems, Computer Science Education
McNeish, Daniel M. – Journal of Educational and Behavioral Statistics, 2016
Mixed-effects models (MEMs) and latent growth models (LGMs) are often considered interchangeable save the discipline-specific nomenclature. Software implementations of these models, however, are not interchangeable, particularly with small sample sizes. Restricted maximum likelihood estimation that mitigates small sample bias in MEMs has not been…
Descriptors: Models, Statistical Analysis, Hierarchical Linear Modeling, Sample Size
Johnson, Timothy R. – Applied Psychological Measurement, 2013
One of the distinctions between classical test theory and item response theory is that the former focuses on sum scores and their relationship to true scores, whereas the latter concerns item responses and their relationship to latent scores. Although item response theory is often viewed as the richer of the two theories, sum scores are still…
Descriptors: Item Response Theory, Scores, Computation, Bayesian Statistics
Jiao, Hong; Wang, Shudong; He, Wei – Journal of Educational Measurement, 2013
This study demonstrated the equivalence between the Rasch testlet model and the three-level one-parameter testlet model and explored the Markov Chain Monte Carlo (MCMC) method for model parameter estimation in WINBUGS. The estimation accuracy from the MCMC method was compared with those from the marginalized maximum likelihood estimation (MMLE)…
Descriptors: Computation, Item Response Theory, Models, Monte Carlo Methods
Previous Page | Next Page »
Pages: 1 | 2