NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Schouten, Rianne Margaretha; Vink, Gerko – Sociological Methods & Research, 2021
Missing data in scientific research go hand in hand with assumptions about the nature of the missingness. When dealing with missing values, a set of beliefs has to be formulated about the extent to which the observed data may also hold for the missing parts of the data. It is vital that the validity of these missingness assumptions is verified,…
Descriptors: Data, Validity, Beliefs, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Marianne van Dijke-Droogers; Paul Drijvers; Arthur Bakker – Mathematics Education Research Journal, 2025
In our data-driven society, it is essential for students to become statistically literate. A core domain within Statistical Literacy is Statistical Inference, the ability to draw inferences from sample data. Acquiring and applying inferences is difficult for students and, therefore, usually not included in the pre-10th-grade curriculum. However,…
Descriptors: Statistical Inference, Learning Trajectories, Grade 9, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Dennis Klinkhammer; Julia Rüther; Michael Schemmann – Adult Education Quarterly: A Journal of Research and Theory, 2024
Building on previous work on the civic returns of adult learning, this article examines the association between adult education, personality traits, and demands for civic participation or volunteering. Based on National Education Panel Study data, the study finds openness to be a crucial personality trait for participating in further training, as…
Descriptors: Adult Education, Personality Traits, Citizen Participation, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Gibbs, Benjamin G.; Shafer, Kevin; Miles, Aaron – International Journal of Research & Method in Education, 2017
While the use of inferential statistics is a nearly universal practice in the social sciences, there are instances where its application is unnecessary and potentially misleading. This is true for a portion of research using administrative data in educational research in the United States. Surveying all research articles using administrative data…
Descriptors: Statistical Inference, Statistics, Data, Information Utilization
Peer reviewed Peer reviewed
Direct linkDirect link
Walker, David A.; Smith, Thomas J. – Measurement and Evaluation in Counseling and Development, 2017
Nonnormality of data presents unique challenges for researchers who wish to carry out structural equation modeling. The subsequent SPSS syntax program computes bootstrap-adjusted fit indices (comparative fit index, Tucker-Lewis index, incremental fit index, and root mean square error of approximation) that adjust for nonnormality, along with the…
Descriptors: Robustness (Statistics), Sampling, Statistical Inference, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Depaoli, Sarah; Clifton, James P.; Cobb, Patrice R. – Journal of Educational and Behavioral Statistics, 2016
A review of the software Just Another Gibbs Sampler (JAGS) is provided. We cover aspects related to history and development and the elements a user needs to know to get started with the program, including (a) definition of the data, (b) definition of the model, (c) compilation of the model, and (d) initialization of the model. An example using a…
Descriptors: Monte Carlo Methods, Markov Processes, Computer Software, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Hamaker, E. L.; Grasman, R. P. P. P. – Psychometrika, 2012
Many psychological processes are characterized by recurrent shifts between distinct regimes or states. Examples that are considered in this paper are the switches between different states associated with premenstrual syndrome, hourly fluctuations in affect during a major depressive episode, and shifts between a "hot hand" and a…
Descriptors: Psychological Patterns, Statistical Inference, Data, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Van Severen, Lieve; Van Den Berg, Renate; Molemans, Inge; Gillis, Steven – Clinical Linguistics & Phonetics, 2012
Consonant inventories are commonly drawn to assess the phonological acquisition of toddlers. However, the spontaneous speech data that are analysed often vary substantially in size and composition. Consequently, comparisons between children and across studies are fundamentally hampered. This study aims to examine the effect of sample size on the…
Descriptors: Phonemes, Toddlers, Indo European Languages, Speech
Peer reviewed Peer reviewed
Direct linkDirect link
Magis, David; De Boeck, Paul – Educational and Psychological Measurement, 2012
The identification of differential item functioning (DIF) is often performed by means of statistical approaches that consider the raw scores as proxies for the ability trait level. One of the most popular approaches, the Mantel-Haenszel (MH) method, belongs to this category. However, replacing the ability level by the simple raw score is a source…
Descriptors: Test Bias, Data, Error of Measurement, Raw Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Eide, Eric R.; Showalter, Mark H. – Economics of Education Review, 2012
Professors Richard J. Murnane and John B. Willett set out to capitalize on recent developments in education data and methodology by attempting to answer the following questions: How can new methods and data be applied most effectively in educational and social science research? What kinds of research designs are most appropriate? What kinds of…
Descriptors: Social Science Research, Research Methodology, Audiences, Usability
Peer reviewed Peer reviewed
Direct linkDirect link
Buchanan, Taylor L.; Lohse, Keith R. – Measurement in Physical Education and Exercise Science, 2016
We surveyed researchers in the health and exercise sciences to explore different areas and magnitudes of bias in researchers' decision making. Participants were presented with scenarios (testing a central hypothesis with p = 0.06 or p = 0.04) in a random order and surveyed about what they would do in each scenario. Participants showed significant…
Descriptors: Researchers, Attitudes, Statistical Significance, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Dierdorp, Adri; Bakker, Arthur; Eijkelhof, Harrie; van Maanen, Jan – Mathematical Thinking and Learning: An International Journal, 2011
To support 11th-grade students' informal inferential reasoning, a teaching and learning strategy was designed based on authentic practices in which professionals use correlation or linear regression. These practices included identifying suitable physical training programmes, dyke monitoring, and the calibration of measurement instruments. The…
Descriptors: Statistical Inference, Abstract Reasoning, Grade 11, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Savalei, Victoria; Bentler, Peter M. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
A well-known ad-hoc approach to conducting structural equation modeling with missing data is to obtain a saturated maximum likelihood (ML) estimate of the population covariance matrix and then to use this estimate in the complete data ML fitting function to obtain parameter estimates. This 2-stage (TS) approach is appealing because it minimizes a…
Descriptors: Structural Equation Models, Data, Computation, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Laumakis, Paul – Mathematics Teacher, 2011
When taking mathematics courses, students will sometimes ask their recurring question, "When will I ever use this in real life?" Educators are often unable to provide a direct connection between what they are teaching in the classroom and a real-life application. However, when such an opportunity does arise, they should seize it and…
Descriptors: Regression (Statistics), Mathematics Instruction, Mathematics, Mathematics Curriculum
Previous Page | Next Page »
Pages: 1  |  2