NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Shan Zhang; Chris Palaguachi; Marcin Pitera; Chris Davis Jaldi; Noah L. Schroeder; Anthony F. Botelho; Jessica R. Gladstone – Educational Psychology Review, 2024
Systematic reviews are a time-consuming yet effective approach to understanding research trends. While researchers have investigated how to speed up the process of screening studies for potential inclusion, few have focused on to what extent we can use algorithms to extract data instead of human coders. In this study, we explore to what extent…
Descriptors: Bibliometrics, Meta Analysis, Research Methodology, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ranger, Jochen; Schmidt, Nico; Wolgast, Anett – Educational and Psychological Measurement, 2023
Recent approaches to the detection of cheaters in tests employ detectors from the field of machine learning. Detectors based on supervised learning algorithms achieve high accuracy but require labeled data sets with identified cheaters for training. Labeled data sets are usually not available at an early stage of the assessment period. In this…
Descriptors: Identification, Cheating, Information Retrieval, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Ning, Xiaoke – International Journal of Web-Based Learning and Teaching Technologies, 2023
With the vigorous development of intelligent campus construction, great changes have taken place in the development of information technology in colleges and universities from the previous digital to intelligent development. In the teaching process, the analysis of students' classroom learning has also changed from the previous manual observation…
Descriptors: College Students, Algorithms, Student Behavior, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Li Cai – Journal of Educational and Behavioral Statistics, 2024
The cross-classified data structure is ubiquitous in education, psychology, and health outcome sciences. In these areas, assessment instruments that are made up of multiple items are frequently used to measure latent constructs. The presence of both the cross-classified structure and multivariate categorical outcomes leads to the so-called…
Descriptors: Classification, Data Collection, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Kearney, Christopher A.; Childs, Joshua – Improving Schools, 2023
School attendance and absenteeism are critical targets of educational policies and practices that often depend heavily on aggregated attendance/absenteeism data. School attendance/absenteeism data in aggregated form, in addition to having suspect quality and utility, minimizes individual student variation, distorts detailed and multilevel…
Descriptors: Data Analysis, Attendance, Educational Policy, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Mathilde Léon; Shoba S. Meera; Anne-Caroline Fiévet; Alejandrina Cristia – Research Ethics, 2024
The last decade has seen a rise in big data approaches, including in the humanities, whereby large quantities of data are collected and analysed. In this paper, we discuss long-form audio recordings that result from individuals wearing a recording device for many hours. Linguists, psychologists and anthropologists can use them, for example, to…
Descriptors: Foreign Countries, Developing Nations, Data Collection, Audio Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Barczak, Andre L. C.; Mathrani, Anuradha; Han, Binglan; Reyes, Napoleon H. – Educational Technology Research and Development, 2023
An important course in the computer science discipline is 'Data Structures and Algorithms' (DSA). "The coursework" lays emphasis on experiential learning for building students' programming and algorithmic reasoning abilities. Teachers set up a repertoire of formative programming exercises to engage students with different programmatic…
Descriptors: Computer Assisted Testing, Automation, Computer Science Education, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Landers, Richard N.; Auer, Elena M.; Mersy, Gabriel; Marin, Sebastian; Blaik, Jason – International Journal of Testing, 2022
Assessment trace data, such as mouse positions and their timing, offer interesting and provocative reflections of individual differences yet are currently underutilized by testing professionals. In this article, we present a 10-step procedure to maximize the probability that a trace data modeling project will be successful: (1) grounding the…
Descriptors: Artificial Intelligence, Data Collection, Psychometrics, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Hagadone-Bedir, Mariah; Voithofer, Rick; Kulp, Jessica T. – British Journal of Educational Technology, 2023
This conceptual study uses dynamic systems theory (DST) and phenomenology as lenses to examine data privacy implications surrounding wearable devices that incorporate stakeholder, contextual and technical factors. Wearable devices can impact people's behaviour and sense of self, and DST and phenomenology provide complementary approaches for…
Descriptors: Privacy, Information Security, Assistive Technology, Systems Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Lili Qin; Weixuan Zhong; Hugh C. Davis – International Journal of Web-Based Learning and Teaching Technologies, 2023
In response to the problem of inaccurate classification of big data information in traditional English teaching ability evaluation algorithms, this paper proposes an English teaching ability estimation algorithm based on big data fuzzy K-means clustering. Firstly, the article establishes a constraint parameter index analysis model. Secondly,…
Descriptors: Data Analysis, Data Collection, Algorithms, Teacher Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism
Peer reviewed Peer reviewed
Direct linkDirect link
Nayak, Padmalaya; Vaheed, Sk.; Gupta, Surbhi; Mohan, Neeraj – Education and Information Technologies, 2023
Students' academic performance prediction is one of the most important applications of Educational Data Mining (EDM) that helps to improve the quality of the education process. The attainment of student outcomes in an Outcome-based Education (OBE) system adds invaluable rewards to facilitate corrective measures to the learning processes.…
Descriptors: Predictor Variables, Academic Achievement, Data Collection, Information Retrieval
Peer reviewed Peer reviewed
Direct linkDirect link
Arantes, Janine Aldous; Vicars, Mark – Learning, Media and Technology, 2023
In the recent Australian 2021 census, the socio-technical construct of algorithmically driven decision-making processes made LGBTQI+ data as a category of diversity, inclusion and belonging an absent presence. In this paper, we position the notion of 'data justice' in relation to the entrenchment of inequalities and exclusion of LGBTQI+ lives and…
Descriptors: Foreign Countries, Homosexuality, LGBTQ People, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Sahlgren, Otto – Learning, Media and Technology, 2023
As awareness of bias in educational machine learning applications increases, accountability for technologies and their impact on educational equality is becoming an increasingly important constituent of ethical conduct and accountability in education. This article critically examines the relationship between so-called algorithmic fairness and…
Descriptors: Algorithms, Accountability, Data Collection, Educational Policy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yueqiao Jin; Vanessa Echeverria; Lixiang Yan; Linxuan Zhao; Riordan Alfredo; Yi-Shan Tsai; Dragan Gasevic; Roberto Martinez-Maldonado – Journal of Learning Analytics, 2024
Multimodal learning analytics (MMLA) integrates novel sensing technologies and artificial intelligence algorithms, providing opportunities to enhance student reflection during complex, collaborative learning experiences. Although recent advancements in MMLA have shown its capability to generate insights into diverse learning behaviours across…
Descriptors: Learning Analytics, Accountability, Ethics, Artificial Intelligence
Previous Page | Next Page »
Pages: 1  |  2