NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
No Child Left Behind Act 20011
What Works Clearinghouse Rating
Showing 1 to 15 of 99 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Basnet, Ram B.; Johnson, Clayton; Doleck, Tenzin – Education and Information Technologies, 2022
The nature of teaching and learning has evolved over the years, especially as technology has evolved. Innovative application of educational analytics has gained momentum. Indeed, predictive analytics have become increasingly salient in education. Considering the prevalence of learner-system interaction data and the potential value of such data, it…
Descriptors: Prediction, Dropouts, Predictive Measurement, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Desai, Rachana; Magan, Ansuyah; Maposa, Innocent; Ruiter, Robert; Rochat, Tamsen; Mercken, Liesbeth – Youth & Society, 2024
The majority of adolescents communicate via text-based messaging, particularly through WhatsApp, a widely used free communication application. Written content on WhatsApp has the methodological potential to provide rich qualitative interview data. This study compares data collected using text-based WhatsApp versus face-to-face interview…
Descriptors: Comparative Analysis, Data Collection, Computer Mediated Communication, Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Deeva, Galina; De Smedt, Johannes; De Weerdt, Jochen – IEEE Transactions on Learning Technologies, 2022
Due to the unprecedented growth in available data collected by e-learning platforms, including platforms used by massive open online course (MOOC) providers, important opportunities arise to structurally use these data for decision making and improvement of the educational offering. Student retention is a strategic task that can be supported by…
Descriptors: Electronic Learning, MOOCs, Dropouts, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
De Silva, Liyanachchi Mahesha Harshani; Chounta, Irene-Angelica; Rodríguez-Triana, María Jesús; Roa, Eric Roldan; Gramberg, Anna; Valk, Aune – Journal of Learning Analytics, 2022
Although the number of students in higher education institutions (HEIs) has increased over the past two decades, it is far from assured that all students will gain an academic degree. To that end, institutional analytics (IA) can offer insights to support strategic planning with the aim of reducing dropout and therefore of minimizing its negative…
Descriptors: College Students, Dropouts, Dropout Prevention, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cannistrà, Marta; Masci, Chiara; Ieva, Francesca; Agasisti, Tommaso; Paganoni, Anna Maria – Studies in Higher Education, 2022
This paper combines a theoretical-based model with a data-driven approach to develop an Early Warning System that detects students who are more likely to dropout. The model uses innovative multilevel statistical and machine learning methods. The paper demonstrates the validity of the approach by applying it to administrative data from a leading…
Descriptors: Dropouts, Potential Dropouts, Dropout Prevention, Dropout Characteristics
Peer reviewed Peer reviewed
Direct linkDirect link
Andrea Zanellati; Stefano Pio Zingaro; Maurizio Gabbrielli – IEEE Transactions on Learning Technologies, 2024
Academic dropout remains a significant challenge for education systems, necessitating rigorous analysis and targeted interventions. This study employs machine learning techniques, specifically random forest (RF) and feature tokenizer transformer (FTT), to predict academic attrition. Utilizing a comprehensive dataset of over 40 000 students from an…
Descriptors: Dropouts, Dropout Characteristics, Potential Dropouts, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Stephen M. McPherson – SRATE Journal, 2025
This quantitative based applied research study examined data collected fromstudents who have withdrawnfromor completed aneducator preparation program (EPP) ina small rural public community college in WestVirginia. This study compared studentretention rates with Frontier andRemote (FAR) designation by home zip code. These data informedthe research…
Descriptors: Teacher Education, Rural Schools, Public Colleges, Community Colleges
Peer reviewed Peer reviewed
PDF on ERIC Download full text
de Andrade, Tiago Luís; Rigo, Sandro José; Barbosa, Jorge Luis Victória – Informatics in Education, 2021
Distance Learning has enabled educational practices based on digital platforms, generating massive amounts of data. Several initiatives use this data to identify dropout contexts, mainly providing teacher support about student behavior. Approaches such as Active Methodologies are known as having good potential to involve and motivate students.…
Descriptors: Learning Analytics, Distance Education, Dropout Prevention, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Weiand, Augusto; Manssour, Isabel Harb; Silveira, Milene Selbach – International Journal of Distance Education Technologies, 2019
With technological advances, distance education has been frequently discussed in recent years. The learning environments used in this course usually generates a great deal of data because of the large number of students and the various tasks involving their interaction. In order to facilitate the analysis of the data, the authors researched to…
Descriptors: Foreign Countries, Distance Education, Online Courses, Visualization
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Albreiki, Balqis; Zaki, Nazar; Alashwal, Hany – Education Sciences, 2021
Educational Data Mining plays a critical role in advancing the learning environment by contributing state-of-the-art methods, techniques, and applications. The recent development provides valuable tools for understanding the student learning environment by exploring and utilizing educational data using machine learning and data mining techniques.…
Descriptors: Literature Reviews, Grade Prediction, Artificial Intelligence, Educational Environment
Peer reviewed Peer reviewed
Direct linkDirect link
Koçtürk, Nilüfer; Ulas, Özlem; Bilginer, Çilem – School Mental Health, 2019
Child sexual abuse (CSA) is not only a serious danger for children and families, but it is also a problem that concerns society economically and spiritually. The aim of this study is to examine career choices and educational problems of individuals who have experienced CSA. Participants of this study consist of 73 CSA victims. The data have been…
Descriptors: Career Development, Sexual Abuse, Children, Child Abuse
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Shivangi; Sabitha, A. Sai – Education and Information Technologies, 2019
Aimed at a massive outreach and open access education, Massive Open Online Courses (MOOC) has evolved incredibly engaging millions of learners' over the years. These courses provide an opportunity for learning analytics with respect to the diversity in learning activity. Inspite of its growth, high dropout rate of the learners', it is examined to…
Descriptors: Retention (Psychology), Online Courses, Learner Engagement, Electronic Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Cardona, Tatiana; Cudney, Elizabeth A.; Hoerl, Roger; Snyder, Jennifer – Journal of College Student Retention: Research, Theory & Practice, 2023
This study presents a systematic review of the literature on the predicting student retention in higher education through machine learning algorithms based on measures such as dropout risk, attrition risk, and completion risk. A systematic review methodology was employed comprised of review protocol, requirements for study selection, and analysis…
Descriptors: Learning Analytics, Data Analysis, Prediction, Higher Education
Peer reviewed Peer reviewed
Direct linkDirect link
Cohen, Anat – Educational Technology Research and Development, 2017
Persistence in learning processes is perceived as a central value; therefore, dropouts from studies are a prime concern for educators. This study focuses on the quantitative analysis of data accumulated on 362 students in three academic course website log files in the disciplines of mathematics and statistics, in order to examine whether student…
Descriptors: Academic Persistence, Predictor Variables, Dropouts, At Risk Students
Peer reviewed Peer reviewed
Direct linkDirect link
Abdulkadir Palanci; Rabia Meryem Yilmaz; Zeynep Turan – Education and Information Technologies, 2024
This study aims to reveal the main trends and findings of the studies examining the use of learning analytics in distance education. For this purpose, journal articles indexed in the SSCI index in the Web of Science database were reviewed, and a total of 400 journal articles were analysed within the scope of this study. The systematic review…
Descriptors: Learning Analytics, Distance Education, Educational Trends, Periodicals
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7