NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)1
Since 2006 (last 20 years)7
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Selver, M. Alper – IEEE Transactions on Education, 2016
Medical imaging systems (MIS) constitute an important emergent subdiscipline of engineering studies. In the context of electrical and electronics engineering (EEE) education, MIS courses cover physics, instrumentation, data acquisition, image formation, modeling, and quality assessment of various modalities. Many well-structured MIS courses are…
Descriptors: Design, Medical Education, Laboratory Experiments, Engineering Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Hoffman, Adam; Turner, Ken – Journal of Chemical Education, 2015
A multipart laboratory activity introducing microbeads was created to meet engineering and engineering design practices consistent with new Next Generation Science Standards (NGSS). Microbeads are a current topic of concern as they have been found to cause adverse impacts in both marine and freshwater systems resulting in multiple states proposing…
Descriptors: Chemistry, Educational Experiments, Investigations, Engineering Education
Peer reviewed Peer reviewed
Direct linkDirect link
Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James – Multicultural Education & Technology Journal, 2013
Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…
Descriptors: Electronic Learning, Distance Education, Computer Simulation, Skill Development
Peer reviewed Peer reviewed
Direct linkDirect link
Jalali, M.; Marti, J. J.; Kirchhoff, A. L.; Lawrenz, F.; Campbell, S. A. – IEEE Transactions on Education, 2012
A lithography lab course has been developed that is applicable to students from the middle-school level up to college students. It can also be inserted into electronics technology or similar courses in two- and four-year colleges, or used to demonstrate applications of polymers in chemistry classes. Some of these techniques would enable research…
Descriptors: Technology Education, Research Tools, Concept Teaching, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Chandra A. P., Jagadeesh; Samuel, R. D. Sudhaker – International Journal of Distance Education Technologies, 2010
Attaining excellence in technical education is a worthy challenge to any life goal. Distance learning opportunities make these goals easier to reach with added quality. Distance learning in engineering education is possible only through successful implementations of remote laboratories in a learning-by-doing environment. This paper presents one…
Descriptors: Electronic Learning, Engineering Education, Distance Education, Technical Education
Peer reviewed Peer reviewed
Direct linkDirect link
Jernigan, S. R.; Fahmy, Y.; Buckner, G. D. – IEEE Transactions on Education, 2009
This paper details a successful and inexpensive implementation of a remote laboratory into a distance control systems course using readily available hardware and software. The physical experiment consists of a beach ball and a dc blower; the control objective is to make the height of the aerodynamically levitated beach ball track a reference…
Descriptors: Distance Education, Laboratory Experiments, Science Laboratories, Online Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Salinger, Gerhard L. – Journal of Technology Studies, 2005
Engineering technology education (as distinguished from Engineering Technology education) is a design problem. In engineering, an important consideration is to determine the goal of the design. What is the desired result? For whom is it desirable? What are the unintended consequences? In this article, the author continues to raise the questions of…
Descriptors: Engineering Technology, Technological Literacy, Educational Opportunities, Technology Education
Beasley, Charles A.; And Others – Engineering Education, 1990
Describes a technique for using lecture-laboratory facilities and faculty office facilities to provide students a site for intensive laboratory exercises. Provides a layout of the lecture-laboratory facilities and energy systems of the facilities. Presents an instructional example on the concept of the natural frequency of single-degree-of-freedom…
Descriptors: College Science, Course Content, Engineering Education, Engineering Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Abdel-Salam, Tarek; Kauffman, Paul J.; Crossman, Gary – European Journal of Engineering Education, 2006
Educators question whether performing a laboratory experiment as an observer (non-hands-on), such as conducted in a distance education context, can be as effective a learning tool as personally performing the experiment in a laboratory environment. The present paper investigates this issue by comparing the performance of distance education…
Descriptors: Distance Education, Laboratory Experiments, Hands on Science, Mechanics (Physics)
Peer reviewed Peer reviewed
Direct linkDirect link
Marcus, Michael L.; Winters, Dixie L. – Journal of STEM Education: Innovations and Research, 2004
Students from science, engineering, and technology programs should be able to work together as members of project teams to find solutions to technical problems. The exercise in this paper describes the methods actually used by a project team from a Biomedical Instrumentation Corporation in which scientists, technicians, and engineers from various…
Descriptors: Engineering, Engineering Education, Engineering Technology, Problem Solving