NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 142 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ishaya Gambo; Faith-Jane Abegunde; Omobola Gambo; Roseline Oluwaseun Ogundokun; Akinbowale Natheniel Babatunde; Cheng-Chi Lee – Education and Information Technologies, 2025
The current educational system relies heavily on manual grading, posing challenges such as delayed feedback and grading inaccuracies. Automated grading tools (AGTs) offer solutions but come with limitations. To address this, "GRAD-AI" is introduced, an advanced AGT that combines automation with teacher involvement for precise grading,…
Descriptors: Automation, Grading, Artificial Intelligence, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Putnikovic, Marko; Jovanovic, Jelena – IEEE Transactions on Learning Technologies, 2023
Automatic grading of short answers is an important task in computer-assisted assessment (CAA). Recently, embeddings, as semantic-rich textual representations, have been increasingly used to represent short answers and predict the grade. Despite the recent trend of applying embeddings in automatic short answer grading (ASAG), there are no…
Descriptors: Automation, Computer Assisted Testing, Grading, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Tan, Hongye; Wang, Chong; Duan, Qinglong; Lu, Yu; Zhang, Hu; Li, Ru – Interactive Learning Environments, 2023
Automatic short answer grading (ASAG) is a challenging task that aims to predict a score for a given student response. Previous works on ASAG mainly use nonneural or neural methods. However, the former depends on handcrafted features and is limited by its inflexibility and high cost, and the latter ignores global word cooccurrence in a corpus and…
Descriptors: Automation, Grading, Computer Assisted Testing, Graphs
Peer reviewed Peer reviewed
Direct linkDirect link
Jonas Flodén – British Educational Research Journal, 2025
This study compares how the generative AI (GenAI) large language model (LLM) ChatGPT performs in grading university exams compared to human teachers. Aspects investigated include consistency, large discrepancies and length of answer. Implications for higher education, including the role of teachers and ethics, are also discussed. Three…
Descriptors: College Faculty, Artificial Intelligence, Comparative Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Aditya Shah; Ajay Devmane; Mehul Ranka; Prathamesh Churi – Education and Information Technologies, 2024
Online learning has grown due to the advancement of technology and flexibility. Online examinations measure students' knowledge and skills. Traditional question papers include inconsistent difficulty levels, arbitrary question allocations, and poor grading. The suggested model calibrates question paper difficulty based on student performance to…
Descriptors: Computer Assisted Testing, Difficulty Level, Grading, Test Construction
Peer reviewed Peer reviewed
Direct linkDirect link
Xuefan Li; Marco Zappatore; Tingsong Li; Weiwei Zhang; Sining Tao; Xiaoqing Wei; Xiaoxu Zhou; Naiqing Guan; Anny Chan – IEEE Transactions on Learning Technologies, 2025
The integration of generative artificial intelligence (GAI) into educational settings offers unprecedented opportunities to enhance the efficiency of teaching and the effectiveness of learning, particularly within online platforms. This study evaluates the development and application of a customized GAI-powered teaching assistant, trained…
Descriptors: Artificial Intelligence, Technology Uses in Education, Student Evaluation, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Wallace N. Pinto Jr.; Jinnie Shin – Journal of Educational Measurement, 2025
In recent years, the application of explainability techniques to automated essay scoring and automated short-answer grading (ASAG) models, particularly those based on transformer architectures, has gained significant attention. However, the reliability and consistency of these techniques remain underexplored. This study systematically investigates…
Descriptors: Automation, Grading, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
Direct linkDirect link
Rebecka Weegar; Peter Idestam-Almquist – International Journal of Artificial Intelligence in Education, 2024
Machine learning methods can be used to reduce the manual workload in exam grading, making it possible for teachers to spend more time on other tasks. However, when it comes to grading exams, fully eliminating manual work is not yet possible even with very accurate automated grading, as any grading mistakes could have significant consequences for…
Descriptors: Grading, Computer Assisted Testing, Introductory Courses, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Filighera; Sebastian Ochs; Tim Steuer; Thomas Tregel – International Journal of Artificial Intelligence in Education, 2024
Automatic grading models are valued for the time and effort saved during the instruction of large student bodies. Especially with the increasing digitization of education and interest in large-scale standardized testing, the popularity of automatic grading has risen to the point where commercial solutions are widely available and used. However,…
Descriptors: Cheating, Grading, Form Classes (Languages), Computer Software
Santi Lestari – Research Matters, 2024
Despite the increasing ubiquity of computer-based tests, many general qualifications examinations remain in a paper-based mode. Insufficient and unequal digital provision across schools is often identified as a major barrier to a full adoption of computer-based exams for general qualifications. One way to overcome this barrier is a gradual…
Descriptors: Keyboarding (Data Entry), Handwriting, Test Format, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tri Sedya Febrianti; Siti Fatimah; Yuni Fitriyah; Hanifah Nurhayati – International Journal of Education in Mathematics, Science and Technology, 2024
Assessing students' understanding of circle-related material through subjective tests is effective, though grading these tests can be challenging and often requires technological support. ChatGPT has shown promise in providing reliable and objective evaluations. Many teachers in Indonesia, however, continue to face difficulties integrating…
Descriptors: Artificial Intelligence, Computer Assisted Testing, Scoring, Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Schneider, Johannes; Richner, Robin; Riser, Micha – International Journal of Artificial Intelligence in Education, 2023
Autograding short textual answers has become much more feasible due to the rise of NLP and the increased availability of question-answer pairs brought about by a shift to online education. Autograding performance is still inferior to human grading. The statistical and black-box nature of state-of-the-art machine learning models makes them…
Descriptors: Grading, Natural Language Processing, Computer Assisted Testing, Ethics
Peer reviewed Peer reviewed
Direct linkDirect link
Umar Bin Qushem; Solomon Sunday Oyelere; Gökhan Akçapinar; Rogers Kaliisa; Mikko-Jussi Laakso – Technology, Knowledge and Learning, 2024
Predicting academic performance for students majoring in computer science has long been a significant field of research in computing education. Previous studies described that accurate prediction of students' early-stage performance could identify low-performing students and take corrective action to improve performance. Besides, adopting machine…
Descriptors: Predictor Variables, Learning Analytics, At Risk Students, Computer Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kangkang Li; Qian Yang; Xianmin Yang – IEEE Transactions on Learning Technologies, 2024
The student-generated question (SGQ) strategy is an effective instructional strategy for developing students' higher order cognitive and critical thinking. However, assessing the quality of SGQs is time consuming and domain experts intensive. Previous automatic evaluation work focused on surface-level features of questions. To overcome this…
Descriptors: Computer Simulation, Artificial Intelligence, Computer Assisted Testing, Automation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10