Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 40 |
Since 2006 (last 20 years) | 60 |
Descriptor
Source
Author
Stapleton, Laura M. | 3 |
Chang, Wanchen | 2 |
Hartley, Sigan L. | 2 |
Huang, Francis L. | 2 |
McNeish, Daniel M. | 2 |
Pituch, Keenan A. | 2 |
Poteat, V. Paul | 2 |
Yang, Ji Seung | 2 |
Aelterman, N. | 1 |
Ahmed Haddadi | 1 |
Alamri, Abeer | 1 |
More ▼ |
Publication Type
Journal Articles | 61 |
Reports - Research | 55 |
Reports - Evaluative | 4 |
Reports - Descriptive | 2 |
Information Analyses | 1 |
Tests/Questionnaires | 1 |
Education Level
Secondary Education | 15 |
Elementary Education | 10 |
High Schools | 9 |
Higher Education | 9 |
Postsecondary Education | 8 |
Middle Schools | 7 |
Early Childhood Education | 4 |
Grade 5 | 4 |
Intermediate Grades | 4 |
Grade 11 | 3 |
Grade 4 | 3 |
More ▼ |
Audience
Location
Germany | 3 |
Canada | 2 |
Florida | 2 |
Massachusetts | 2 |
Texas | 2 |
United Kingdom | 2 |
Arizona | 1 |
Arkansas | 1 |
Austria | 1 |
Belgium | 1 |
California | 1 |
More ▼ |
Laws, Policies, & Programs
Individuals with Disabilities… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Tenko Raykov; Ahmed Haddadi; Christine DiStefano; Mohammed Alqabbaa – Educational and Psychological Measurement, 2025
This note is concerned with the study of temporal development in several indices reflecting clustering effects in multilevel designs that are frequently utilized in educational and behavioral research. A latent variable method-based approach is outlined, which can be used to point and interval estimate the growth or decline in important functions…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Educational Research, Statistical Inference
Wei Li; Yanli Xie; Dung Pham; Nianbo Dong; Jessaca Spybrook; Benjamin Kelcey – Asia Pacific Education Review, 2024
Cluster randomized trials (CRTs) are commonly used to evaluate the causal effects of educational interventions, where the entire clusters (e.g., schools) are randomly assigned to treatment or control conditions. This study introduces statistical methods for designing and analyzing two-level (e.g., students nested within schools) and three-level…
Descriptors: Research Design, Multivariate Analysis, Randomized Controlled Trials, Hierarchical Linear Modeling
Zsuzsa Bakk; Roberto Di Mari; Jennifer Oser; Jouni Kuha – Structural Equation Modeling: A Multidisciplinary Journal, 2022
In this article, we present a two-stage estimation approach applied to multilevel latent class analysis (LCA) with covariates. We separate the estimation of the measurement and structural model. This makes the extension of the structural model computationally efficient. We investigate the robustness against misspecifications of the proposed…
Descriptors: Multivariate Analysis, Hierarchical Linear Modeling, Computation, Measurement
Finch, W. Holmes – Journal of Experimental Education, 2022
Multivariate analysis of variance (MANOVA) is widely used to test the null hypothesis of equal multivariate means across 2 or more groups. MANOVA rests upon an assumption that error terms are independent of one another, which can be violated if individuals are clustered or nested within groups, such as schools. Ignoring such nesting can result in…
Descriptors: Multivariate Analysis, Hypothesis Testing, Structural Equation Models, Hierarchical Linear Modeling
Minjung Kim; Christa Winkler; James Uanhoro; Joshua Peri; John Lochman – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Cluster memberships associated with the mediation effect are often changed due to the temporal distance between the cause-and-effect variables in longitudinal data. Nevertheless, current practices in multilevel mediation analysis mostly assume a purely hierarchical data structure. A Monte Carlo simulation study is conducted to examine the…
Descriptors: Hierarchical Linear Modeling, Mediation Theory, Multivariate Analysis, Causal Models
Tara Slominski; Oluwatobi O. Odeleye; Jacob W. Wainman; Lisa L. Walsh; Karen Nylund-Gibson; Marsha Ing – CBE - Life Sciences Education, 2024
Mixture modeling is a latent variable (i.e., a variable that cannot be measured directly) approach to quantitatively represent unobserved subpopulations within an overall population. It includes a range of cross-sectional (such as latent class [LCA] or latent profile analysis) and longitudinal (such as latent transition analysis) analyses and is…
Descriptors: Educational Research, Multivariate Analysis, Research Methodology, Hierarchical Linear Modeling
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Wang, Yan; Kim, Eunsook; Joo, Seang-Hwane; Chun, Seokjoon; Alamri, Abeer; Lee, Philseok; Stark, Stephen – Journal of Experimental Education, 2022
Multilevel latent class analysis (MLCA) has been increasingly used to investigate unobserved population heterogeneity while taking into account data dependency. Nonparametric MLCA has gained much popularity due to the advantage of classifying both individuals and clusters into latent classes. This study demonstrated the need to relax the…
Descriptors: Nonparametric Statistics, Hierarchical Linear Modeling, Monte Carlo Methods, Simulation
Luo, Wen; Li, Haoran; Baek, Eunkyeng; Chen, Siqi; Lam, Kwok Hap; Semma, Brandie – Review of Educational Research, 2021
Multilevel modeling (MLM) is a statistical technique for analyzing clustered data. Despite its long history, the technique and accompanying computer programs are rapidly evolving. Given the complexity of multilevel models, it is crucial for researchers to provide complete and transparent descriptions of the data, statistical analyses, and results.…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Prediction, Research Problems
Park, Sunyoung; Natasha Beretvas, S. – Journal of Experimental Education, 2021
When selecting a multilevel model to fit to a dataset, it is important to choose both a model that best matches characteristics of the data's structure, but also to include the appropriate fixed and random effects parameters. For example, when researchers analyze clustered data (e.g., students nested within schools), the multilevel model can be…
Descriptors: Hierarchical Linear Modeling, Statistical Significance, Multivariate Analysis, Monte Carlo Methods
Sen, Sedat; Terzi, Ragip; Yildirim, Ibrahim; Cohen, Allan S. – Turkish Journal of Education, 2018
The purpose of this study was to examine the effect of equated and non-equated data on value-added assessment analyses. Several models have been proposed in the literature to apply the value-added assessment approach. This study compared two different value-added models: the unadjusted hierarchical linear model and the generalized persistence…
Descriptors: Equated Scores, Value Added Models, Hierarchical Linear Modeling, Persistence
Vidotto, Davide; Vermunt, Jeroen K.; van Deun, Katrijn – Journal of Educational and Behavioral Statistics, 2018
With this article, we propose using a Bayesian multilevel latent class (BMLC; or mixture) model for the multiple imputation of nested categorical data. Unlike recently developed methods that can only pick up associations between pairs of variables, the multilevel mixture model we propose is flexible enough to automatically deal with complex…
Descriptors: Bayesian Statistics, Multivariate Analysis, Data, Hierarchical Linear Modeling
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
McNeish, Daniel – Journal of Experimental Education, 2018
Small samples are common in growth models due to financial and logistical difficulties of following people longitudinally. For similar reasons, longitudinal studies often contain missing data. Though full information maximum likelihood (FIML) is popular to accommodate missing data, the limited number of studies in this area have found that FIML…
Descriptors: Growth Models, Sampling, Sample Size, Hierarchical Linear Modeling
Grund, Simon; Lüdtke, Oliver; Robitzsch, Alexander – Journal of Educational and Behavioral Statistics, 2018
Multiple imputation (MI) can be used to address missing data at Level 2 in multilevel research. In this article, we compare joint modeling (JM) and the fully conditional specification (FCS) of MI as well as different strategies for including auxiliary variables at Level 1 using either their manifest or their latent cluster means. We show with…
Descriptors: Statistical Analysis, Data, Comparative Analysis, Hierarchical Linear Modeling