Publication Date
In 2025 | 0 |
Since 2024 | 5 |
Since 2021 (last 5 years) | 6 |
Since 2016 (last 10 years) | 14 |
Since 2006 (last 20 years) | 21 |
Descriptor
Maximum Likelihood Statistics | 45 |
Statistical Distributions | 45 |
Bayesian Statistics | 14 |
Estimation (Mathematics) | 14 |
Monte Carlo Methods | 14 |
Mathematical Models | 13 |
Goodness of Fit | 12 |
Computation | 11 |
Probability | 11 |
Structural Equation Models | 10 |
Equations (Mathematics) | 9 |
More ▼ |
Source
Author
Gifford, Janice A. | 2 |
Ke-Hai Yuan | 2 |
Ling Ling | 2 |
Swaminathan, Hariharan | 2 |
Zhang, Zhiyong | 2 |
Zhiyong Zhang | 2 |
Aimel Zafar | 1 |
Anderson, Harry E., Jr. | 1 |
Anderson, Ronald D. | 1 |
Andreas Kurz | 1 |
Arnold, Barry C. | 1 |
More ▼ |
Publication Type
Journal Articles | 45 |
Reports - Research | 28 |
Reports - Evaluative | 13 |
Reports - Descriptive | 3 |
Speeches/Meeting Papers | 1 |
Education Level
Early Childhood Education | 1 |
Grade 10 | 1 |
Grade 11 | 1 |
Grade 12 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
High Schools | 1 |
Higher Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
More ▼ |
Audience
Location
Minnesota | 1 |
United Kingdom (Scotland) | 1 |
Laws, Policies, & Programs
Individuals with Disabilities… | 1 |
Assessments and Surveys
Multidimensional Personality… | 1 |
National Longitudinal Study… | 1 |
National Longitudinal Survey… | 1 |
Peabody Individual… | 1 |
Raven Progressive Matrices | 1 |
Wechsler Adult Intelligence… | 1 |
What Works Clearinghouse Rating
Aimel Zafar; Manzoor Khan; Muhammad Yousaf – Measurement: Interdisciplinary Research and Perspectives, 2024
Subjects with initially extreme observations upon remeasurement are found closer to the population mean. This tendency of observations toward the mean is called regression to the mean (RTM) and can make natural variation in repeated data look like real change. Studies, where subjects are selected on a baseline criterion, should be guarded against…
Descriptors: Measurement, Regression (Statistics), Statistical Distributions, Intervention
Kjorte Harra; David Kaplan – Structural Equation Modeling: A Multidisciplinary Journal, 2024
The present work focuses on the performance of two types of shrinkage priors--the horseshoe prior and the recently developed regularized horseshoe prior--in the context of inducing sparsity in path analysis and growth curve models. Prior research has shown that these horseshoe priors induce sparsity by at least as much as the "gold…
Descriptors: Structural Equation Models, Bayesian Statistics, Regression (Statistics), Statistical Inference
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Grantee Submission, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Ke-Hai Yuan; Ling Ling; Zhiyong Zhang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Data in social and behavioral sciences typically contain measurement errors and do not have predefined metrics. Structural equation modeling (SEM) is widely used for the analysis of such data, where the scales of the manifest and latent variables are often subjective. This article studies how the model, parameter estimates, their standard errors…
Descriptors: Structural Equation Models, Computation, Social Science Research, Error of Measurement
Shin, Myungho; No, Unkyung; Hong, Sehee – Educational and Psychological Measurement, 2019
The present study aims to compare the robustness under various conditions of latent class analysis mixture modeling approaches that deal with auxiliary distal outcomes. Monte Carlo simulations were employed to test the performance of four approaches recommended by previous simulation studies: maximum likelihood (ML) assuming homoskedasticity…
Descriptors: Robustness (Statistics), Multivariate Analysis, Maximum Likelihood Statistics, Statistical Distributions
Cai, Tianji; Xia, Yiwei; Zhou, Yisu – Sociological Methods & Research, 2021
Analysts of discrete data often face the challenge of managing the tendency of inflation on certain values. When treated improperly, such phenomenon may lead to biased estimates and incorrect inferences. This study extends the existing literature on single-value inflated models and develops a general framework to handle variables with more than…
Descriptors: Statistical Distributions, Probability, Statistical Analysis, Statistical Bias
Johnson, Wendy; Deary, Ian J.; Bouchard, Thomas J., Jr. – Educational and Psychological Measurement, 2018
Most study samples show less variability in key variables than do their source populations due most often to indirect selection into study participation associated with a wide range of personal and circumstantial characteristics. Formulas exist to correct the distortions of population-level correlations created. Formula accuracy has been tested…
Descriptors: Correlation, Sampling, Statistical Distributions, Accuracy
Carpenter, Bob; Gelman, Andrew; Hoffman, Matthew D.; Lee, Daniel; Goodrich, Ben; Betancourt, Michael; Brubaker, Marcus A.; Guo, Jiqiang; Li, Peter; Riddell, Allen – Grantee Submission, 2017
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.14.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the…
Descriptors: Programming Languages, Probability, Bayesian Statistics, Monte Carlo Methods
Oort, Frans J.; Jak, Suzanne – Research Synthesis Methods, 2016
Meta-analytic structural equation modeling (MASEM) involves fitting models to a common population correlation matrix that is estimated on the basis of correlation coefficients that are reported by a number of independent studies. MASEM typically consist of two stages. The method that has been found to perform best in terms of statistical…
Descriptors: Maximum Likelihood Statistics, Meta Analysis, Structural Equation Models, Correlation
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Finch, Holmes; Edwards, Julianne M. – Educational and Psychological Measurement, 2016
Standard approaches for estimating item response theory (IRT) model parameters generally work under the assumption that the latent trait being measured by a set of items follows the normal distribution. Estimation of IRT parameters in the presence of nonnormal latent traits has been shown to generate biased person and item parameter estimates. A…
Descriptors: Item Response Theory, Computation, Nonparametric Statistics, Bayesian Statistics
Johnson, Roger W.; Kliche, Donna V.; Smith, Paul L. – Journal of Statistics Education, 2015
Being able to characterize the size of raindrops is useful in a number of fields including meteorology, hydrology, agriculture and telecommunications. Associated with this article are data sets containing surface (i.e. ground-level) measurements of raindrop size from two different instruments and two different geographical locations. Students may…
Descriptors: Data Analysis, Meteorology, Weather, Measurement Techniques
Twardzik, Erica; MacDonald, Megan; Dixon-Ibarra, Alicia – Journal of Early Intervention, 2017
Services offered through Part C of the Individuals With Disabilities Education Improvement Act improve cognitive, behavioral, and physical skills for children less than 3 years old at risk for or with a disability. However, there are low enrollment rates into services. Various Lead Agencies oversee services through Part C, and states determine…
Descriptors: Enrollment Rate, Early Intervention, Federal Legislation, Equal Education