Publication Date
In 2025 | 3 |
Since 2024 | 22 |
Since 2021 (last 5 years) | 44 |
Since 2016 (last 10 years) | 73 |
Since 2006 (last 20 years) | 114 |
Descriptor
Source
Author
Publication Type
Education Level
Location
Australia | 6 |
United Kingdom | 3 |
Canada | 2 |
Finland | 2 |
Germany | 2 |
Italy | 2 |
Michigan | 2 |
Switzerland | 2 |
United States | 2 |
Belgium | 1 |
California (San Francisco) | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Graduate Record Examinations | 3 |
Test of English as a Foreign… | 2 |
Praxis Series | 1 |
What Works Clearinghouse Rating
Akif Avcu – Malaysian Online Journal of Educational Technology, 2025
This scope-review presents the milestones of how Hierarchical Rater Models (HRMs) become operable to used in automated essay scoring (AES) to improve instructional evaluation. Although essay evaluations--a useful instrument for evaluating higher-order cognitive abilities--have always depended on human raters, concerns regarding rater bias,…
Descriptors: Automation, Scoring, Models, Educational Assessment
Lottridge, Susan; Woolf, Sherri; Young, Mackenzie; Jafari, Amir; Ormerod, Chris – Journal of Computer Assisted Learning, 2023
Background: Deep learning methods, where models do not use explicit features and instead rely on implicit features estimated during model training, suffer from an explainability problem. In text classification, saliency maps that reflect the importance of words in prediction are one approach toward explainability. However, little is known about…
Descriptors: Documentation, Learning Strategies, Models, Prediction
Becker, Benjamin; Weirich, Sebastian; Goldhammer, Frank; Debeer, Dries – Journal of Educational Measurement, 2023
When designing or modifying a test, an important challenge is controlling its speededness. To achieve this, van der Linden (2011a, 2011b) proposed using a lognormal response time model, more specifically the two-parameter lognormal model, and automated test assembly (ATA) via mixed integer linear programming. However, this approach has a severe…
Descriptors: Test Construction, Automation, Models, Test Items
Zhu, Xinhua; Wu, Han; Zhang, Lanfang – IEEE Transactions on Learning Technologies, 2022
Automatic short-answer grading (ASAG) is a key component of intelligent tutoring systems. Deep learning is an advanced method to deal with recognizing textual entailment tasks in an end-to-end manner. However, deep learning methods for ASAG still remain challenging mainly because of the following two major reasons: (1) high-precision scoring…
Descriptors: Intelligent Tutoring Systems, Grading, Automation, Models
Kangkang Li; Chengyang Qian; Xianmin Yang – Education and Information Technologies, 2025
In learnersourcing, automatic evaluation of student-generated content (SGC) is significant as it streamlines the evaluation process, provides timely feedback, and enhances the objectivity of grading, ultimately supporting more effective and efficient learning outcomes. However, the methods of aggregating students' evaluations of SGC face the…
Descriptors: Student Developed Materials, Educational Quality, Automation, Artificial Intelligence
Benjamin Goecke; Paul V. DiStefano; Wolfgang Aschauer; Kurt Haim; Roger Beaty; Boris Forthmann – Journal of Creative Behavior, 2024
Automated scoring is a current hot topic in creativity research. However, most research has focused on the English language and popular verbal creative thinking tasks, such as the alternate uses task. Therefore, in this study, we present a large language model approach for automated scoring of a scientific creative thinking task that assesses…
Descriptors: Creativity, Creative Thinking, Scoring, Automation
Feng Hsu Wang – IEEE Transactions on Learning Technologies, 2024
Due to the development of deep learning technology, its application in education has received increasing attention from researchers. Intelligent agents based on deep learning technology can perform higher order intellectual tasks than ever. However, the high deployment cost of deep learning models has hindered their widespread application in…
Descriptors: Learning Processes, Models, Man Machine Systems, Cooperative Learning
Chaudhuri, Nandita Bhanja; Dhar, Debayan; Yammiyavar, Pradeep G. – International Journal of Technology and Design Education, 2022
Evaluating novelty in design education is subjective and generally depends on expert's referential metrics. Presently, practitioners in this field perform subjective evaluation of answers of prospective students, but many a time, humans are prone to errors when associated with repetitive tasks on large-scale. Therefore, this paper attempts to…
Descriptors: Novelty (Stimulus Dimension), Automation, Evaluation, Aptitude
Zirou Lin; Hanbing Yan; Li Zhao – Journal of Computer Assisted Learning, 2024
Background: Peer assessment has played an important role in large-scale online learning, as it helps promote the effectiveness of learners' online learning. However, with the emergence of numerical grades and textual feedback generated by peers, it is necessary to detect the reliability of the large amount of peer assessment data, and then develop…
Descriptors: Peer Evaluation, Automation, Grading, Models
Ulrike Padó; Yunus Eryilmaz; Larissa Kirschner – International Journal of Artificial Intelligence in Education, 2024
Short-Answer Grading (SAG) is a time-consuming task for teachers that automated SAG models have long promised to make easier. However, there are three challenges for their broad-scale adoption: A technical challenge regarding the need for high-quality models, which is exacerbated for languages with fewer resources than English; a usability…
Descriptors: Grading, Automation, Test Format, Computer Assisted Testing
Hossein Kermani; Alireza Bayat Makou; Amirali Tafreshi; Amir Mohamad Ghodsi; Ali Atashzar; Ali Nojoumi – International Journal of Social Research Methodology, 2024
Despite the increasing adaption of automated text analysis in communication studies, its strengths and weaknesses in framing analysis are so far unknown. Fewer efforts have been made to automatic detection of networked frames. Drawing on the recent developments in this field, we harness a comparative exploration, using Latent Dirichlet Allocation…
Descriptors: COVID-19, Pandemics, Automation, Foreign Countries
Tan, Hongye; Wang, Chong; Duan, Qinglong; Lu, Yu; Zhang, Hu; Li, Ru – Interactive Learning Environments, 2023
Automatic short answer grading (ASAG) is a challenging task that aims to predict a score for a given student response. Previous works on ASAG mainly use nonneural or neural methods. However, the former depends on handcrafted features and is limited by its inflexibility and high cost, and the latter ignores global word cooccurrence in a corpus and…
Descriptors: Automation, Grading, Computer Assisted Testing, Graphs
Ceylan, Hasan Can; Hardalaç, Naciye; Kara, Ali Can; Hardalaç Firat – World Journal of Education, 2021
Because the classification saves time in the learning process and enables this process to take place more easily, its contribution to music learning cannot be denied. One of the most valid and effective methods in music classification is music genre classification. Given the rapid progress of music production in the world and the significant…
Descriptors: Music, Classification, Automation, Music Education
Heng Zhang; Minhong Wang – Knowledge Management & E-Learning, 2024
With the fast development of artificial intelligence and emerging technologies, automatic recognition of students' facial expressions has received increased attention. Facial expressions are a kind of external manifestation of emotional states. It is important for teachers to assess students' emotional states and adjust teaching activities…
Descriptors: Artificial Intelligence, Models, Recognition (Psychology), Nonverbal Communication
Uto, Masaki; Aomi, Itsuki; Tsutsumi, Emiko; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2023
In automated essay scoring (AES), essays are automatically graded without human raters. Many AES models based on various manually designed features or various architectures of deep neural networks (DNNs) have been proposed over the past few decades. Each AES model has unique advantages and characteristics. Therefore, rather than using a single-AES…
Descriptors: Prediction, Scores, Computer Assisted Testing, Scoring